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[1] Merz and Blöschl (2008a, 2008b) proposed the concept of flood frequency hydrology,
which highlights the importance of combining local flood data with additional types of
information: temporal information on historic floods, spatial information on floods in
neighboring catchments, and causal information on the flood processes. Although most of
the previous studies combined flood data with only one extra type of information, all three
types are used here in a Bayesian analysis. To illustrate ways to combine the additional
information and to assess its value, flood frequency analyses before and after the
extraordinary 2002 flood event are compared for the 622 km2 Kamp river in northern
Austria. Although this outlier significantly affects the flood frequency estimates if only local
flood data are used (60% difference for the 100 year flood), the effect is much reduced if all
additional information is used (only 3% difference). The Bayesian analysis also shows that
the estimated uncertainty is significantly reduced when more information is used (for the
100 year return period, the 90% credible intervals range reduces from 140% to 31% of the
corresponding flood peak estimate). Further analyses show that the sensitivity of the flood
estimates to the assumptions made on one piece of information is small when all pieces of
information are considered together. While expanding information beyond the systematic
flood record is sometimes considered of little value in engineering hydrology because
subjective assumptions are involved, the results of this study suggest that the extra
information (temporal, spatial, and causal) may outweigh the uncertainty caused by
these assumptions.

Citation: Viglione, A., R. Merz, J. L. Salinas, and G. Blöschl (2013), Flood frequency hydrology: 3. A Bayesian analysis, Water
Resour. Res., 49, doi:10.1029/2011WR010782.

1. Introduction

[2] The concept of flood frequency hydrology [Merz and
Blöschl, 2008a, 2008b] highlights the importance of using
a maximum of hydrologic information from different sour-
ces and a combination based on hydrological reasoning. In
their framework, Merz and Blöschl [2008a, 2008b] propose
to compile flood peaks at the site of interest plus three addi-
tional types of information: temporal, spatial, and causal
information.

[3] Temporal information expansion is directed toward
collecting information on the flood behavior before (or
after) the period of discharge observations (systematic data
period). Spatial information expansion is based on using
flood information from neighboring catchments to improve
flood frequency estimates at the site of interest. Causal in-
formation expansion analyzes the generating mechanisms
of floods in the catchment of interest. For each of these

types of information expansion, methods have been pro-
posed in the literature. Formal methods exist on combining
historical flood data (from flood marks and archives) and
possibly paleofloods with available flood records [e.g.,
Leese, 1973; Stedinger and Cohn, 1986; Cohn et al., 1997;
O’Connell et al., 2002; England et al., 2003; Reis and Ste-
dinger, 2005; Benito and Thorndycraft, 2005], which
would be considered temporal information expansion.
Methods of regional flood frequency analysis [e.g., Dal-
rymple, 1960; Cunnane, 1988; Tasker and Stedinger,
1989; Bob�ee and Rasmussen, 1995; Hosking and Wallis,
1997; Merz and Blöschl, 2005] would be considered spatial
information expansion. Finally, the derived flood frequency
approach [e.g., Eagleson, 1972; Kurothe et al., 1997; Fior-
entino and Iacobellis, 2001; Sivapalan et al., 2005] or,
more generally, rainfall-runoff modeling [e.g., Pilgrim and
Cordery, 1993; Wagener et al., 2004] would be considered
causal information expansion.

[4] As discussed in Merz and Blöschl [2008b], it is vital
to account for the respective uncertainties of the various
pieces of information when combining them. In local flood
statistics, a range of estimates may result from a reasonable
fit of several distributions to the observed data or by
accounting for the uncertainty associated with the esti-
mated parameters of those distributions. Historical flood
data may only allow us to give a range of estimates owing
to large uncertainties. Spatial information may lead to a
range of estimates when using several regionalization
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schemes or parameters of the regionalization schemes all of
which may be consistent with the regional information.
Causal information may result in a range of estimates due
to using different methods, different data, and uncertainty
in the expert judgment. In Merz and Blöschl [2008b], the
final estimate was obtained by expert judgment, consider-
ing the relative uncertainties of the component sources of
information [see also Gutknecht et al., 2006].

[5] The present paper is a follow up of Merz and Blöschl
[2008a, 2008b] where, instead of reasoning in terms of
ranges of estimates, we account for the uncertainty inherent
to the different sources of information using the Bayesian
framework. Bayesian methods provide a computationally
convenient way to fit frequency distributions for flood fre-
quency analysis by using different sources of information
as systematic flood records, historical floods, regional in-
formation, and other hydrologic information along with
related uncertainties (e.g., measurement errors). They also
provide an attractive and straightforward way to estimate
the uncertainty in parameters and quantiles metrics.

[6] In flood hydrology, Bayesian methods have been
used often for pieces of information such as historic floods
[e.g., Stedinger and Cohn, 1986; O’Connell et al., 2002;
Parent and Bernier, 2003a; Reis and Stedinger, 2005;
Neppel et al., 2010; Payrastre et al., 2011], regional infor-
mation [e.g., Wood and Rodriguez-Iturbe, 1975; Kuczera,
1982, 1983; Madsen and Rosbjerg, 1997; Fill and Ste-
dinger, 1998; Seidou et al., 2006; Ribatet et al., 2007;
Micevski and Kuczera, 2009; Gaume et al., 2010], and less
frequently for other information such as, for example,
expert opinion [e.g., Kirnbauer et al., 1987; Parent and
Bernier, 2003b]. In the literature, there are examples in
which more than one piece of additional information was
used in a Bayesian analysis. For example, Vicens et al.
[1975] investigate information expansion from regional in-
formation (through regression models) or expert judgment
(causal information from precipitation characteristics) but
do not combine the two together. Martins and Stedinger
[2001] use historical information jointly with the general-
ized maximum likelihood method, which can be thought as
regional (or expert) information expansion. The aim of this
paper is to illustrate by example how all three pieces of
information (Figure 1, top row) can be combined in a
Bayesian analysis and to assess the sensitivity of the final

flood estimate to the assumptions involved. Obviously,
there may be applications, where not all three types of in-
formation expansion (temporal, spatial, and causal) can be
provided, e.g., no historic flood data and/or regional studies
are available; so, we test the effect of each piece of infor-
mation on the flood estimates separately.

[7] The sensitivity of the flood estimate to the flood peak
sample at hand is also assessed by comparing two cases in
a study catchment where a very large flood has occurred. In
the first case, we assume that only the information before
the big flood is available to mimic the situations where no
large floods have been observed but may occur. In the sec-
ond case, we include the large flood.

[8] The information expansion used in this study is not
only diverse in terms of the temporal, spatial, and causal
character of the additional information but also in the quali-
tative character of the information (Figure 1, bottom row):
(1) additional data, (2) full information or, and (3) partial in-
formation on the prior distribution of parameters of the
selected statistical model. In the example presented here-
after, historical floods are used as additional data; regional
information provides an estimate of the full distribution of
the model parameters, while the estimate with uncertainty of
one flood peak quantile, obtained through expert judgment
from a rainfall-runoff modeler, constitutes partial informa-
tion on the model parameters. This may differ in other appli-
cations, where, e.g., spatial information expansion could
provide only partial information while causal information
expansion could provide full information on the prior distri-
bution of the parameters of the selected statistical model.

2. Kamp at Zwettl

[9] The Kamp river at Zwettl is located in northern Aus-
tria and has a catchment area of 622 km2. For the Kamp at
Zwettl, annual flood peak data from 1951 to 2005 are avail-
able (Figure 2). The statistical analyses of the flood peaks
are dominated by the extreme flood event in August 2002,
which interested a large portion of Central Europe [see,
e.g., Chory�nski et al., 2012]. Due to that flood, the Kamp
catchment has been extensively studied in the last years
[e.g., Gutknecht et al., 2002; Komma et al., 2007; Blöschl
et al., 2008; Reszler et al., 2008; Viglione et al., 2010]. In
August 2002, a Vb-cyclone [Mudelsee et al., 2004] carried

Figure 1. Use of information additional to the maximum annual flood peak systematic record. (top
row) The hydrological pieces of information and (bottom row) the way they are used in the Bayesian
framework. The terms ‘ Djhð Þ and � hð Þ are the likelihood function and the prior distribution of the
parameters of the selected statistical model, respectively, as in the Bayes’ theorem (equation (1) in section 3).
In brackets are indicated the sections of the paper where the types of information are discussed.
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warm moist air from the Adriatic region and caused persis-
tent rainfall over the Kamp region. This resulted in an esti-
mated peak flow of 460 m3/s, which is three times the
second largest flood in the 55 year record. In a humid cli-
mate such as Austria, this is an extraordinary event. Owing
to the extreme event in 2002, the systematic sample mean
annual flood (MAF), its coefficient of variation (CV), and
skewness (CS) are 63 m3/s, 0.98, and 5.21, respectively. A
generalized extreme value (GEV) distribution, fitted by the
method of L-moments, gives a 100 year flood runoff (Q100)
of 285 m3/s. When extrapolating this flood frequency curve
to large return periods, one would assign a return period of
340 years to the 2002 event.

[10] The 2002 flood departs significantly from the other
events in the record and indeed statistical tests, such as
threshold analyses [e.g., Stedinger et al., 1993], identify the
2002 flood event as an outlier. Without the extreme event in
2002 (considering the record 1951–2001), the sample MAF,
CV, and CS are 57 m3/s, 0.51, and 1.14, respectively. In par-
ticular, the skewness is much smaller than that from the sam-
ple including the 2002 flood. The Q100 from the sample
without the 2002 flood is 159 m3/s (GEV distribution fitted
with the method of L-moments). When extrapolating this
flood frequency curve to large return periods, one would
assign a return period greater than 100,000 years to the 2002
event. If one takes the samples (either with or without the
2002 flood) at face value, one assumes that they are repre-
sentative of the population of extreme events. When includ-
ing the 2002 flood, the statistically estimated return period
of such an extreme event decreases dramatically, which
implies that such extreme events occur regularly, while
when excluding the event, the statistically estimated return
period of such an extreme event is very high, which implies
that such events occur very rarely. It is a similar situation as
the one described more than 80 years ago by Hazen [1930],
who investigated the effect of one large flood (June 1921 on
the Arkansas River) in a short record.

[11] Of course, the extraordinary event of 2002 has to be
included in the analysis because it reveals how extreme the
floods can be in the Kamp catchment [Laio et al., 2010].
From a practical perspective, one is particularly interested
in cases where such an extraordinary flood has not yet

occurred, although may occur in the future. We, therefore,
compare two cases hereafter. In the first case, we assume
that only the information until the end of 2001 is available,
i.e., the situation of particular relevance for engineering
design. In the second case, we include information until the
end of 2005. The comparison is to assess how well a flood
of the magnitude of the 2002 event could have been antici-
pated statistically prior to the occurrence of that event.

3. Bayesian Inference Using Systematic
Data Only

[12] In flood frequency analysis, Bayesian inference is a
method in which the Bayes’ theorem is used to combine
the information provided by the locally observed flood data
with additional information independent from those data.
For a flood frequency distribution with parameters h, the
Bayes’ theorem states that

p hjDð Þ ¼ ‘ Djhð Þ� hð ÞZ
X
‘ Djhð Þ� hð Þdh

/ ‘ Djhð Þ� hð Þ; (1)

where p hjDð Þ is the posterior distribution of the parameters
h, after having observed the data D ; ‘ Djhð Þ is the likeli-
hood function, i.e., the probability density function (pdf) of
the data conditional on the parameters ; � hð Þ is the prior
distribution of the parameters, which can be formulated
from additional information that does not take into account
any information contained in the observed data D ; and the
integral in the denominator of equation (1), computed on
the whole parameter space X, serves as a normalization
constant to obtain a unit area under the posterior pdf
p hjDð Þ. In Bayesian inference, the parameters h are consid-
ered as random variables and the uncertainty associated
with them can be explicitly modeled, thus allowing to
assign credible intervals (which are the Bayesian analogs to
the confidence intervals in frequentist statistics) to the esti-
mated flood quantiles. These credible intervals reflect user
perception instead of a frequentist assessment of the proba-
bility of the true value to fall between them [see, e.g.,
Montanari et al., 2009].

[13] Since, in most of the cases, the integral in the de-
nominator of equation (1) cannot be processed in closed
form, simulation-based Monte Carlo techniques such as the
Markov chain Monte Carlo (MCMC) approaches are used.
MCMC methods (which include random walk Monte Carlo
methods) are a class of algorithms for sampling from prob-
ability distributions based on constructing a Markov chain
that has the desired distribution (in our case, the posterior
probability model) as its equilibrium distribution [see, e.g.,
Robert and Casella, 2004; Gelman et al., 2004]. The states
of the chain after a large number of steps are then used as a
sample from the desired distribution (the quality of the
sample improves as a function of the number of steps). Sev-
eral MCMC algorithms have been used in flood hydrology
[e.g., Kuczera, 1999; Reis and Stedinger, 2005; Ribatet
et al., 2007]. We use the Metropolis-Hastings algorithm
[Chib and Greenberg, 1995].

[14] When only systematic data are used, we write the
likelihood function in equation (1) as

Figure 2. Time series of maximum annual peak dis-
charges of the Kamp at Zwettl (622 km2). Ranges for three
historical floods and the threshold not exceeded (300 m3/s)
in the historic period (1600–1950), at least no more than in
these three cases, are also shown.
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‘S Djhð Þ ¼
Ys

i¼1

fX xijhð Þ; (2)

where D is the sample of annual discharge maxima system-
atically recorded x1; x2; . . . ; xs (in our case, s ¼ 55 years)
and fX :ð Þ is the pdf of the variable X (representing the max-
imum annual peak discharges). We assume that the peaks
xi are known exactly but equation (2) could be generalized
to account for uncertainties (random and independent) and/
or systematic errors due, for example, to the construction
of the rating curves [see, e.g., Kuczera, 1992, 1996;
O’Connell et al., 2002; Reis and Stedinger, 2005; Neppel
et al., 2010]. For the distribution function fX, we assume
the GEV distribution with parameters h ¼ �1; �2; �3½ � :

fX xjhð Þ ¼ 1

�2
1� �3 x� �1ð Þ

�2

� �1=�3�1

� exp � 1� �3 x� �1ð Þ
�2

� �1=�3
( )

;

(3)

where �1 denotes the location parameter, �2 the scale
parameter, and �3 the shape parameter [e.g., Grimaldi
et al., 2011, p. 489]. An improper flat prior on the parame-

ters is used in equation (1) that corresponds to no informa-
tion other than the data, i.e., 8h � hð Þ ¼ 1. Note that other
noninformative priors could be used [e.g., Reis and Ste-
dinger, 2005] and that, in practice, general priors like the
geophysical prior proposed by Martins and Stedinger
[2000] (GML method) are often employed. In this section,
we do not use the GML method, which restrict the shape
parameter of the GEV distribution to a statistically/physi-
cally reasonable range, because it can be considered as a re-
gional or expert information expansion.

[15] By applying the MCMC algorithm, one obtains the
fit represented in Figure 3a, considering the data until 2001
(before the big 2002 event), and in Figure 3b, considering
the data until 2005 (after the big 2002 event). The two
graphs show the estimates for the flood frequency curves
corresponding to the posterior mode (PM) (i.e., GEV with
parameters h corresponding to the maximum of p hjDð Þ)
and the 90% credible bounds associated with them. Note
that the MCMC algorithm is not needed to identify the pos-
terior mode but to quantify the uncertainty. Because the
posterior density is known exactly up to a scale normaliza-
tion constant, one can find the maximum without knowing
the normalization constant. The choice of the posterior
mode has been made for consistency with the maximum

Figure 3. Bayesian fit of the GEV distribution to the data of the Kamp at Zwettl (a and c) before and
(b and d) after the 2002 event. The following cases are shown: in Figures 3a and 3b, only the systematic
data from 1951 are used; in Figures 3c and 3d, historic flood information is also included. The distribu-
tion corresponding to the posterior mode (PM) of the parameters is shown as continuous line, while the
5% and 95% credible bounds are shown as dashed lines. Mean, CV, and CS corresponding to the PM are
indicated, as well as the 100 years return period quantile and its 5% and 95% credible values.
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likelihood method, but other choices could have been
made. For example, one could have taken the parameters cor-
responding to the mean of p hjDð Þ, or, alternatively, one could
use the Bayesian posterior predictive distribution, which is
defined as the expected exceedence probability distribution
of flood peak values with the expectation taken over all fea-
sible values of the parameters (i.e., by integrating over their
posterior distribution [see Kuczera, 1999, equation (9)]).
The credible bounds have been constructed by reading off
the 5% and 95% nonexceedance values from all quantiles
corresponding to the MCMC generated parameters.

[16] Figure 3 also lists the values of MAF, CV, and CS
for the GEV curve (corresponding to the PM) and the PM
value of Q100 along with the 90% credible interval. The
PM estimate of the 100 year flood runoff (Q100) after 2002
is almost 100 m3/s higher than the PM estimate before
2002 (the difference of the two is 60% of the value before
2002). The difference of the Q1000 is more than 100%. As
can be seen in Figures 3a and 3b, the shape of the fitted
curve is very different in the two cases, much more skewed
if the analysis is done after the big 2002 event (�3 ¼
�0.096 before 2002 against �3 ¼ �0.31 after 2002). More
remarkably, the 90% credible bounds are very different,
i.e., the inclusion of the 2002 event increases considerably
the uncertainty accounted for by the method. The 90%
credible bounds range for Q100 is about 100% of Q100 before
2002 and 140% of Q100 after 2002. For Q1000, the ranges are
more than 200% and almost 300% of the PM estimates
before and after 2002, respectively (and this does not change
if a 20% random error is assumed for the 2002 event).

[17] Although this increase of uncertainty after 2002
would be expected from a statistical perspective, it is dis-
turbing from a hydrological perspective as the large event
has indeed revealed a lot of information on the hydrology
of extreme events in this catchment (and one would hope
that additional information allows to better constrain the
estimates). Observing the 2002 event leads to an increase
of knowledge on floods that could happen, therefore to a
reduction of knowledge uncertainty (also called epistemic
uncertainty in Montanari et al. [2009]). The widened credi-
ble bands after 2002 reflect the fact that a higher natural
variability (also called structural uncertainty in Montanari
et al. [2009]) has been correctly recognized by the statisti-
cal method. In the following sections, we compare the two
estimates when additional information is used, as summar-
ized in Figure 1.

4. Temporal Information Expansion

[18] To expand information into the past, historical flood
information is used [Br�azdil et al., 2006]. A survey of the
local archives [Wiesbauer, 2004, 2007] reports that the three
largest historical floods in the past 400 years occurred in
1655, 1803, and 1829 (Figure 2). The flood discharge of
these events is highly uncertain but, for a historic analysis,
the relative magnitudes as compared to the 2002 flood suf-
fice. Information on inundation areas indicates that the water
levels of the 1655 and 1829 events ranged around the 2002
event but these two events were caused by ice jams, so the
discharges were likely smaller than those of the 2002 flood.
The inundated area of the 1803 event in the downstream
reach of the Kamp was much larger than in August 2002,

but there were apparently backwater effects from the Dan-
ube, which were less pronounced in 2002, so that the associ-
ated flood discharges can be assumed to be smaller than for
the 2002 event. These analyses, therefore, suggest that the
2002 event was probably the largest event since 1600. Based
on the work of Wiesbauer [2004, 2007], the estimated peak
discharges for the three historic events at Zwettl are those
shown in Figure 2, where uncertainty bounds have been set
at 625% of the peak discharges from expert judgment on
the basis of geometry, roughness, and potential changes in
the river morphology. Moreover, for all the other years of
the historic period (1600–1950), we assume that the thresh-
old of 300 m3/s was never exceeded. The threshold has been
set equal to the highest possible value of the smallest of the
three historic events (see Figure 2).

[19] Suppose that x1; x2; . . . ; xs is the sample of annual
discharge maxima systematically recorded in s ¼ 55 years
(from 1951 to 2005), and y1; y2; . . . ; yk are k ¼ 3 extraordi-
nary flood discharges of the events of 1655, 1803, and
1829, which occurred during the historical period (h ¼ 350
years). Further, let us suppose that X0 ¼ 300 m3/s is the
perception threshold, i.e., the threshold ensuring exhaustiv-
ity of the information above it. Finally, the magnitudes of
the historical floods are known with uncertainty, for
instance, with lower and upper bounds yLj; yUj

� �
(Figure 2).

All this information constitutes D, the observed data. We
write the joint probability of occurrence of recent and his-
torical flood observations as in Stedinger and Cohn [1986]:

‘ Djhð Þ ¼ ‘S Djhð Þ � ‘H Djhð Þ; (4)

where ‘S Djhð Þ is given by equation (2) and, indicating by
FX :ð Þ, the cumulative of fX :ð Þ given by equation (3):

‘H Djhð Þ ¼ h
k

� �
FX X0jhð Þ h�kð Þ Yk

j¼1

FX yUjjh
� 	

� FX yLjjh
� 	� �( )

:

(5)

The likelihood function ‘ Djhð Þ combines three terms: (1)
the pdf of the s systematic data; (2) the probability of
observing no events above X0 for h – k years; and (3) the
probability of observing k historical events lying between
the specified lower and upper bounds. The distribution
describing the uncertainty on the historic flood peaks is
assumed to be uniform (between yLj and yUj) but could be
generalized to account for other error structures such as
systematic errors due to hydraulic models used to recon-
struct the discharges [Neppel et al., 2010]. In addition, the
threshold is assumed without uncertainty for clarity
although it is affected by the same uncertainty as the flood
peaks. In section 8, the sensitivity of the estimates to the
position of the perception threshold is examined.

[20] Considering the case represented in Figure 2, apply-
ing the MCMC algorithm and assuming a GEV distribution
and the same improper flat prior used in section 3 (in equa-
tion (1), 8h � hð Þ ¼ 1), one obtains the fit represented in
Figure 3c, considering the data until 2001, and in Figure
3d, considering the data until 2005. The PM estimate of
Q100 after 2002 is just 12% higher than the PM estimate
before 2002 (the difference between the two estimates is
only 26 m3/s). For Q1000, the difference is about 25%.
Compared to the case shown in Figures 3a and 3b (use of
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the systematic data only), the difference of estimation of
flood quantiles in the two cases is much reduced, i.e., the
weight of the 2002 event in the estimation exercise has
been reduced by accounting for other extreme events. Still,
for high return periods, the PM curves differ, as the esti-
mated CS after 2002 is still much higher than before 2002
(�3 ¼ �0.22 before 2002 against �3 ¼ �0.28 after 2002).
Accounting for the historic information also narrows the
90% credible bounds considerably (e.g., the range for Q100

is about 54% of Q100 before 2002 and 56% after 2002).

5. Spatial Information Expansion

[21] Quantitative estimates of flood frequencies based on
neighboring catchments can be obtained by various formal
regionalization schemes. In the work by Merz and Blöschl
[2005], the predictive performance of various types of auto-
matic regionalization methods was examined on the basis of
a jack-knifing comparison for 575 Austrian catchments,
indicating that a geostatistical method outperforms other

methods such as regressions and the region of influence
approach. The geostatistical regionalization method known
as topkriging [Sk�ien et al., 2006] takes both catchment
area and the river network structure into account and pro-
vides regional estimates of streamflow statistics at each
point of the network as well as estimates of the uncertainty
related to them (variances of estimation). In principle, one
could use topkriging to regionalize the GEV parameters,
estimated at the gauged stations, but we use the results of
Merz et al. [2008] who regionalize the maximum annual
flood moments in Austria. In the following, we indicate
these moments as M ¼ MAF �;CV ;CS½ �. For ease of
comparison of catchments of different size, the MAF peak
has been standardized as MAF � ¼ MAF � A��1���,
where A is the catchment area, � ¼ 100 km2 is a standard
catchment area and � is obtained from a regional analysis
[Merz and Blöschl, 2005, 2008a, 2008b]. Topkriging pro-
vides estimates for the means E Mð Þ and variances
Var Mð Þ for the Kamp at Zwettl in cross-validation mode,
i.e., without using the local data.

Figure 4. Distribution of the estimated MAF � ¼ MAF � A��1100�� [m3/s/km2], CV, and CS of the
maximum annual floods in Austria (stations with more than 40 years of data). The natural logarithm trans-
formation is shown. (left column) The histogram is compared with a fitted normal density function. (middle
column) The data are represented in normal probability plots and the result of the Anderson-Darling nor-
mality test is shown as P A2ð Þ. (right column) The correlation between the natural logarithms of the three
moments is calculated.
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[22] If the three-variate distribution of the maximum an-
nual flood moments p Mð Þ is given, then the prior distribu-
tion of the GEV parameters � hð Þ to be used in the Bayesian
procedure can be uniquely defined. Unfortunately, topkrig-
ing does not provide an estimate of the entire trivariate dis-
tribution p Mð Þ. What is missing is the correlation between
the moments (cotopkriging could in principle be used to
provide this but would require to fit three-dimensional
variograms, which is very difficult) and the type of joint
distribution.

[23] To obtain an understanding of the shape of the mar-
ginals and the correlation between moments, a regional
analysis was conducted here of the sample MAF �, CV, and
CS for all stations in Austria. In Figure 4, the natural loga-
rithms of the estimated MAF �, CV, and CS are plotted for
all Austrian sites with more than 40 years of data. The first
column shows histograms of the flood moments and, for
comparison, a normal distribution fitted to them. The sec-
ond column in Figure 4 represents the same data in normal
probability plots and the result of the Anderson-Darling
normality test, P A2ð Þ, is also shown (see D’Agostino and
Stephens [1986] and Laio [2004] for details on the test).
For ln MAF �ð Þ and ln CVð Þ, the test does not reject nor-
mality at the 5% level (P A2ð Þ ¼ 0.94 and 0.93, respec-
tively), while it does for ln CSð Þ. Also, in principle, CS
should be allowed to be negative. However, visual inspection
of Figure 4 suggests that ln CSð Þ is close to normal (closer
than the nontransformed CS) and only nine catchments of
575 in Austria have a local negative CS (corresponding to
catchments where anthropogenic effects are important,
which is not the case for the Kamp catchment). For simplic-
ity, we therefore assume that the marginal distribution of all
three moments, in this particular case study, is lognormal
and that their joint distribution p Mð Þ is three-variate lognor-
mal. Note that alternative distributions could be used without
changing the thrust of the analysis.

[24] The topkriging moment means and standard devia-
tions at Zwettl in cross-validation mode and the sample
correlations between the natural logarithms of the three
moments estimated from the regional data (see the third
column of Figure 4) are used to estimate p Mð Þ at Zwettl
as described in Appendix A (equations A1–A4). The result
is plotted in Figure 5 for the period before the 2002 event
(first column) and for the whole period (second column).
Mean and CV do not differ very much for the two cases,
while the estimated CS is slightly higher when considering
the data until 2005 because the neighboring stations also
experienced the 2002 event although it was less extreme
than at the Kamp. Figure 5 represents the spatial informa-
tion that we want to include into the Bayesian analysis. The
prior distribution of GEV parameters is calculated as
� hð Þ ¼ p Mð Þ � jJ hð Þj, where jJ hð Þj is the Jacobian of the
transformation h!M (see Appendix A, equations A5–
A7). Because information is provided on all three parame-
ters, we consider this as full information on the prior distri-
bution � hð Þ (Figure 1).

[25] The results of the Bayesian fit using the MCMC
algorithm are shown in Figures 6a and 6b. The estimates of
the CV with the regional information are slightly smaller
than the estimates from the temporal information expansion
(Figures 3c and 3d). The regionally estimated CS (i.e., �3 ¼
�0.15 before 2002 against �3 ¼ �0.22 after 2002) is also

smaller than CS from temporal information expansion. The
difference between the two PM estimates in Figures 6a and
6b, before and after 2002, is 38 m3/s, which is about 20%.
For Q1000, the estimate after is about 35% higher than the
estimate before the 2002 event (see also Figure 10 in sec-
tion 9). For the 90% credible bounds, the range for Q100 is
about 53% of Q100 before 2002 and 45% after 2002. For
Q1000, the ranges are about 80% and 60% of the PM esti-
mates before and after 2002, respectively. The width of the
credible bounds for highest return periods obtained from
the regional information is narrower than the one obtained
with the temporal expansion.

6. Causal Information Expansion

[26] The most obvious way of causal information expan-
sion is to derive flood frequencies from rainfall information
and modeling of rainfall-runoff processes. The main benefit
of using rainfall information is that available rainfall records
are often much longer than the flood records (e.g., 100 years
as opposed to flood records of 50 years in Austria). Modeling
the rainfall-runoff processes assists in assessing the processes
that have occurred and could occur, including nonlinearities
and threshold effects [Gutknecht et al., 2002; Komma et al.,
2007; Blöschl et al., 2008; Rogger et al., 2012b]. In this pa-
per, we use the expert opinion of one modeler, J€urgen
Komma, who has much experience with the Kamp area,

Figure 5. Bivariate marginals of the annual flood peak
moment distribution p Mð Þ at Zwettl, based on topkriging
in cross-validation mode (left) before and (right) after the
2002 event and the correlations between moments from the
regional analysis.
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being one of the developers of the operation flood forecast-
ing model in the region, a continuous-simulation model,
which he parameterized on the basis of hydrological data
and field information [see Komma et al., 2007, for details].
We believe that, though subjective, his understanding of the
physical mechanisms of rainfall generation and rainfall-run-
off transformation can provide a valuable prior information.
After discussing with the modeler, the floods that happened
in the past, the mechanisms leading to them, the way he
modeled the local hydrology, and his opinion on the uncer-
tainties involved, we asked him to formulate quantitatively
his beliefs on extremal behavior of floods in the area. As

would be expected, it was not possible for the expert to for-
mulate these beliefs in terms of GEV parameters, but in
terms of extreme quantiles associated with large return peri-
ods, ‘‘a scale on which the expert has familiarity’’ [Coles
and Tawn, 1996, p. 467]. His guess for the 500 year flood
peak was of 480 m3/s 620%. The guessed value (480) is the
result of model simulations with artificial rainfall series
while the uncertainty is based on his experience with the
model in the Kamp and other catchments in Austria. Based
on previous studies [Blöschl et al., 2008; Deutsche Vereini-
gung f€ur Wasserwirtschaft, Abwasser und Abfall (DWA),
2012], and together with the expert, we refined the guess on
the 500 year flood peak to the assumption that

h Q500ð Þ ¼ N �500; �500ð Þ; (6)

where �500 ¼ 480 m3/s, �500 ¼ 80 m3/s, and N is the nor-
mal distribution. This is shown in Figure 7, which repre-
sents the causal information that we want to include into
the Bayesian analysis.

[27] In contrast to Kirnbauer et al. [1987] and Coles and
Tawn [1996], we did not ask the expert for information on
more moments/quantiles to specify entirely the prior � hð Þ.
Information on Q500 is, therefore, a partial information on
the GEV parameters h (Figure 1). We use the information
in equation (6) as part of the MCMC process. During the

Figure 6. Bayesian fit of the GEV distribution to the data of the Kamp at Zwettl (a and c) before and
(b and d) after the 2002 event. The following cases are shown: in Figures 6a and 6b, the regional infor-
mation of topkriging is used along with the systematic data; in Figures 6c and 6d, expert guess for Q500

is used along with the systematic data. (See caption of Figure 3.)

Figure 7. Expert guess for Q500 at Zwettl, modeled by a
Gaussian distribution with mean �500 ¼ 480 m3/s and
standard deviation �500 ¼ 80 m3/s. The box-plot shows the
5%, 25%, 50%, 75%, and 95% quantiles.
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MCMC random walk, triplets of values h ¼ �1; �2; �3½ � are
extracted at each step, corresponding to the following GEV
quantile with 500 year return period:

Q500 ¼ g hð Þ ¼ �1 þ
�2

�3
1� ln

500

500� 1

� ��3

" #
: (7)

During the MCMC random walk, at each step, the likeli-
hood term is multiplied to h g hð Þð Þ (equation (6)) to calcu-
late a posterior distribution of the parameters, which is
consistent with the reasonable range for Q500. In other
words, the function used by the MCMC analysis to com-
pute the posterior distribution of the parameters is
‘ Djhð Þ � h g hð Þð Þ. The fact that � hð Þ is substituted by
h g hð Þð Þ could suggest that this is an arbitrary and nonrigo-
rous choice, but it is not. In Appendix B, we demonstrate
that h g hð Þð Þ ¼ � �1j�2; �3ð Þ, i.e., the pdf of the location pa-
rameter conditional on the other two GEV parameters. The
information is partial ; we cannot specify the entire � hð Þ
from h Q500ð Þ but only one of the three GEV parameters
conditional on the other two. In Appendix B, we show that
� �2j�1; �3ð Þ and � �3j�1; �2ð Þ also can be related to h g hð Þð Þ
but in different ways (see equations (B1) and (B2)). There
is therefore a subjective choice involved (i.e., for what pa-
rameter is the information on Q500 used) and one would
expect this choice to affect the results. However, we found
out that, with the given conditions (e.g., Kamp data, GEV
distribution, etc.), this subjective choice has no significant
effects on the fitted flood frequency curves (not shown
here). Because the information on one parameter condi-
tional to the other two is used as part of the MCMC pro-
cess, the joint likelihood function, the information provided
as to reasonable values of Q500, and the prior distribution
for the parameters all work together to describe the likeli-
hood of the triplets as a whole. In particular, the informa-
tion provided as to reasonable values of Q500 boosts the
posterior probability of triplets that are consistent with the
specified reasonable range for Q500 and decreases the pos-
terior probability of other sets of parameters.

[28] The results, obtained using h g hð Þð Þ as prior, are
shown in Figures 6c and 6d. The estimated CS is much
higher than CS from temporal and spatial information
expansion, which can be explained by the high guess of
Q500 obtained by the rainfall-runoff model (�3 ¼ �0.31
before 2002 against �3 ¼ �0.334 after 2002). In Figure 6d,
the value of CS is marked as NA (not available) because
the coefficient of skewness of a GEV distribution with
shape parameter �3 < �1=3 does not exist. The PM esti-
mate of Q100 after 2002 is only 4% higher than the PM esti-
mate before 2002 (about 10 m3/s), and Q1000 is about 7%
higher. The 90% credible bounds range for Q100 is about
44% of Q100 before 2002 and 38% after 2002. For Q1000,
the ranges are about 65% of both the PM estimates before
and after 2002. The difference between the estimates before
and after 2002 is very small for high return periods since
the additional information on Q500 is related to the most
extreme floods. Citing Coles and Tawn [1996, p. 476]: ‘‘if
the prior is specified for the extreme tail and we focus
attention on the posterior distribution of a quantile which
remains above the maximum observed datum as the sample
size increases to infinity, then the data necessarily fail to
dominate the prior.’’

7. Combination of All Information

[29] One of the most appealing aspects of the Bayesian
method is the possibility to account for all the different
pieces of information together. Among the many different
ways that could be used to combine prior information (spa-
tial and causal), the most natural way is by multiplication,
which is symmetric to the multiplication of the prior and
the likelihood to derive the posterior. Equation (1) then
becomes

p hjDð Þ / ‘S Djhð Þ‘H Djhð Þ½ � �S hð Þ�C hð Þ½ �: (8)

This corresponds to give equal weight to the four pieces of
information: (1) ‘S Djhð Þ, which is the likelihood function
accounting for systematic data only (see section 3); (2)
‘H Djhð Þ, which is the likelihood function accounting for
historic floods (see section 4); (3) �S hð Þ, which is the prior
obtained from the spatial information (topkriging, see sec-
tion 5); and (4) �C hð Þ, which is the prior obtained from
causal information (in this example, just partially defined
by using h g hð Þð Þ from the expert judgment on Q500 in the
MCMC procedure, see section 6).

[30] The results obtained by the MCMC algorithm by
using equation (8) are shown in Figures 8a and 8b. Using in
this way, all information together provides the highest
agreement between the estimates before and after the 2002
event. The difference for the 100 and 1000 year quantiles is
of the order of 3% of Q100 (about 8 m3/s) and 5% for Q1000.
The CS are very close, and the shape parameters of the
GEV distributions are �3 ¼ �0.23 before 2002 and �3 ¼
�0.24 after 2002. The combination of all information pro-
vides the narrowest credible bounds as well : the 90% credi-
ble bounds range for Q100 is about 34% of Q100 before and
31% of Q100 after 2002; for Q1000, the ranges are about
45% and 40% of the PM estimates before and after 2002,
respectively. Of course, inclusion of the extreme 2002 event
still affects the flood frequency curve but, if one compares
Figure 8 to Figures 3a and 3b, it is clear that the influence
of the single extreme event is now very small. The width of
the credible bounds is smaller than what was obtained when
using any of the single pieces of information (temporal, spa-
tial, or causal), especially for high return periods.

[31] Many other ways of combining priors exist. Genest
and Zidek [1986] discuss several pooling models, which are
based on different assumptions. The type of combination
one chooses is a choice (a model of combination) rather
than the result of some probabilistic algebra (as is the multi-
plication of the prior and the likelihood to derive the poste-
rior). The combination �S � �Cð Þ is a special case of what
Genest and Zidek [1986] call ‘‘geometric (or logarithmic)
opinion pool,’’ i.e., � / �w1

1 � . . . � �wn
n with weights wi

assumed equal to one (other weights are considered in the
sensitivity analysis of section 8). The rationale behind mul-
tiplying the priors is that each prior is individually consid-
ered representative of the entire population of the GEV
parameters. One fundamentally different choice is to sum
up the prior distributions �S þ �Cð Þ, which corresponds to
what Genest and Zidek [1986] call ‘‘linear opinion pool’’
(i.e., � / w1�1 þ � � � þ wn�n). The rationale behind sum-
ming up the priors is that each prior individually represents
a different part but together they are representative of the
entire population of the GEV parameters. As an illustration,
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if one is interested in estimating the distribution of weights
of Italian people and has prior information based on two
studies conducted one in Rome and the other in Turin, one
would combine the pieces of information by multiplying
these priors. If, instead, one has prior information based on
two studies conducted in Rome, one on males and the other
on females, one would combine the pieces of information
by summing up these priors. Even though in our study we
assume that the spatial and causal pieces of information are
both individually representative of the flood frequency in
the Kamp region, and therefore only the multiplication of
priors should be considered, in section 8 we also show the
results we would obtain by summing up (and eventually
weighting) the priors. The summation of priors would be

definitively an option in studies where different pieces of
information can be associated to different aspects of the
population of floods, for instance, to different flood types.

8. Sensitivity Analysis

[32] The flood estimates of the Bayesian method, obvi-
ously, depend on the parameters used and, to some extent,
on the assumptions made. To assess what is the relative role
of the different pieces of information accounted for in equa-
tion (8) and the importance of their reliability, Figure 9
shows the result of a sensitivity analysis of some of the pa-
rameters used and the assumptions made in the previous sec-
tions. For clarity, Q100 and Q1000 are considered as estimates

Figure 8. Bayesian fit of the GEV distribution to the data of the Kamp at Zwettl (a) before and (b) after
the 2002 event, when all available information is used. (See caption of Figure 3.)

Figure 9. Sensitivity of the flood estimates on the parameters used and the assumptions made. Posterior
mode estimation (points) and 90% credible bounds (segments) of (a) Q100 and (b) Q1000 at the Kamp
catchment using all pieces of information, after the big 2002 event. The far left bars (with the black square
point) show estimates as in Figure 8; s is the length of the systematic record, X0 is the perception thresh-
old, h is the length of the historical period (equation (8)), �Y is the standard deviation of the topkriging
estimates of the moments of the maximum annual peaks, �500 and �500 are the mean and standard devia-
tion of Q500 given by the expert rainfall-runoff modeler, respectively, and �S and �C are the prior distribu-
tions of the GEV parameters considering the spatial and causal information expansion, respectively.
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after the 2002 event only. The first whisker with the black
square point in the left part of the two graphs represents the
PM estimate and 90% credible bounds obtained using all in-
formation as in Figure 8.

8.1. Sample Length

[33] The first four whiskers, with a circular point and
with a gray background shade, show the effect on the esti-
mates of Q100 and Q1000 of the length of the systematic
data period, when all other pieces of information are also
considered (as in section 7). The first of these whiskers
(denoted by s ¼ 107) is obtained by a longer systematic
data sample reconstructed from water stage data [Gut-
knecht et al., 2002] for the period 1896 to 1947. These
additional data were not used in our previous analyses (i.e.,
sections 4 and 7) to account for the information added by
historical floods only. The reconstructed data indicate that
a number of large floods occurred in the first half of the
twentieth century, while floods tended to be lower in the
second half. Considering these additional data as system-
atic recordings, the likelihood function is again expressed
by equation (2), where the number of observations is now
s ¼ 107 for the period 1896–1947 and 1951–2005. The PM
estimate does not change much (it is slightly higher
because of the large floods in the first half of the century),
and the credible bounds are only slightly narrower. The
second whisker in the gray region (s ¼ 20) is obtained by
considering only the last 20 years of data, the third (s ¼ 5)
considering only the last 5 years, and the fourth (s ¼ 0) by
excluding the systematic data from the analysis (in this last
case, for the 2002 event, we have just assumed that it was
over the threshold of 300 m3/s used for the historical pe-
riod). The PM values increase for a decreasing number of
systematic years, but the increase is moderate. In the worst
case of no systematic data (ungauged site, s ¼ 0), the PM
estimate of Q100 and Q1000 increase by circa 20% and 10%,
respectively. The width of the credible bounds also
increases for a decreasing number of systematic years,
especially for Q100. This last effect is more evident for low
return period quantiles (not shown in the figure) since the
systematic data give much more information for the small
floods than for the big ones.

8.2. Temporal Expansion

[34] The subsequent four whiskers in Figures 9a and 9b,
with white background, result from changes in the assump-
tions made for the temporal expansion of information. The
first of them is obtained if one assumes the threshold X0 of
equation (4) to be 200 m3/s instead of 300 m3/s. Of course,
the PM estimate is then lower because one assumes that, in
the 350 years before the systematic period, all maximum
annual floods were relatively small (except for the three
historic events). Also, the credible bounds are narrower.
This is because, reducing the threshold, one constrains the
range of values for the flood peaks in the past. This would
be a valuable result, provided that the threshold was really
exceeded only three times. Normally, the less the informa-
tion one has on the historic period, the highest the threshold
X0 is, which is usually chosen to be slightly below the most
extreme events reported for the presystematic period. The
neighboring whisker is obtained by considering X0 ¼ 400
m3/s and presents, as expected, a higher PM value (but not

as much as it was lowered by the X0 ¼ 200 m3/s case) and
slightly wider credible bounds. Increasing the threshold
corresponds to providing less information on floods in the
historic period.

[35] The following two whiskers show the case where
the historic period is considered to be 500 years longer
(h ¼ 850 years) or 200 years shorter (h ¼ 150 years). In the
first case, this is like increasing the information content and
the result is similar to the one obtained by decreasing X0.
The PM value is lower and the credible bounds narrower
because now we assume that the threshold X0 ¼ 300 m3/s
was exceeded only three times in 850 years instead of 350
years. Analogously, for a shorter historic period, the PM esti-
mate is higher and the credible bounds larger similarly as for
a higher threshold. Similar sensitivity analyses were pre-
sented in Gaume et al. [2010] showing analogous results.
We also analyzed the effect of increasing or reducing the
uncertainty of estimation of the three historic peaks (not
shown in Figure 9). By setting the historical peak discharge
ranges to be 645% of the peak discharges estimates (more
uncertainty, if compared to 625% used before), Q100 is circa
1% and 2% lower before and after 2002, respectively. By
setting the historical peak discharge ranges to be 65% of the
peak discharges estimates (less uncertainty), Q100 is circa
1% higher both before and after 2002. The same considera-
tions apply to the 90% credible bounds. Because the historic
period is long compared with the systematic sample, the
level of uncertainty of the historic flood peak estimates has
only a limited impact on the statistical inference results [see
also Stedinger and Cohn, 1986; Martins and Stedinger,
2001; Payrastre et al., 2011]. This might also be due to the
assumption that these errors are independent, i.e., due to the
imprecise knowledge of the water levels. Systematic errors,
such as rating curve errors, might exert more leverage on the
inference [e.g., Kuczera, 1996; Neppel et al., 2010].

8.3. Spatial Expansion

[36] The four whiskers in the central part with gray back-
ground of Figures 9a and 9b result from a sensitivity analysis
on the assumptions made for the spatial expansion of infor-
mation. The first two whiskers are obtained by doubling or
halving the standard deviation of the topkriging estimates of
the moments of the maximum annual peaks (2�Y and �Y=2,
respectively). Surprisingly, the width of the credible bounds
is not much affected by that, but the position of the estimates
is. By doubling the standard deviations, the estimates of
Q100 and Q1000 are smaller. The reason of that is related to
the asymmetric shape of the prior distribution of the
moments (Figure 5). For instance, increasing the standard
deviation �Y decreases �ln Yð Þ because of equation (A3) (see
Appendix A). For the same reason, halving the standard
deviations increases the estimates of Q100 and Q1000.

[37] The third whisker (no corr.) is obtained by consider-
ing no correlation in the prior distribution of the moments of
QT given by topkriging. In the example provided here, the
effect of neglecting the correlation among moments is very
small. Visible effects on the estimates of the flood frequency
curve are obtained only if the degree of correlation among
moments is very high (high corr.), i.e., cor ln MAF �ð Þ;½
ln CVð Þ� ¼ �0:9, cor ln MAF �ð Þ; ln CSð Þ½ � ¼ �0:9, and
cor ln CVð Þ; ln CSð Þ½ � ¼ 0:9, when the PM estimates
increase and the credible bounds become slightly narrower,
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especially for Q1000. Assuming high correlation of the
moments (or parameters) corresponds to reducing the degrees
of freedom for the fitted model. It is like providing prior in-
formation on the type of distribution with less than three free
parameters.

8.4. Causal Expansion

[38] The four whiskers, in the central-right part with
white background of Figures 9a and 9b, show the effect of
increasing or decreasing the mean estimate of Q500 by
620% in the causal expansion, as well as doubling or halv-
ing the standard deviation. Departures of 620% in the
expert guess (a priori) cause departures in the PM estimates
(a posteriori) of less than 610% (for both Q100 and Q1000),
because of the other data taken into account. Doubling
the standard deviation increases the width of the credible
intervals and produces a lower PM estimate of Q100. Halv-
ing the standard deviation has the opposite effect. The
results are consistent with those of the sensitivity analysis
on the spatial expansion, but the reasons are different. In
this case, the prior distribution of Q500 is symmetric and
produces an increase of the PM estimation of Q100 and
Q1000 with respect to the other pieces of information. By
reducing the confidence in Q500 (i.e., doubling the standard
deviation), the increase of the PM estimates of Q100 and
Q1000 is reduced, while the opposite happens if one has
more confidence in the estimates of Q500 provided by the
expert. Also, the effects are much more pronounced than
when doubling and halving the standard deviations of the
topkriging estimates of the moments of QT, especially for
Q1000. This is because the causal information expansion
controls the highest return period quantiles in this example.

8.5. Prior Combination

[39] The last four whiskers, in the right part with gray
background of Figures 9a and 9b, show the effect of combin-
ing the spatial and causal information in different ways. As
discussed in section 7, we multiply the priors �S � �Cð Þ,
which is symmetric to the multiplication of the prior and the
likelihood to derive the posterior and which is based on the
assumption that each prior is individually representative of
the entire population of the GEV parameters. To investigate
the sensitivity to this assumption, we also try different combi-
nations. For instance, the first whisker uses the combinationffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�S � �C
p

, which corresponds to smoothing the prior distribu-
tion used in section 7 (i.e., augmenting its variance). In fact,
compared with the simple multiplication (first whiskers with
the square black point), the credible bounds are wider. The
posterior mode is a little bit lower because less weight is
given to the prior, which, because of the causal information,
tends to increase the estimates for high quantiles. That is the
reason of the higher position of the second whisker, which
illustrates the case of using a higher weight for the causal
than for the spatial information (i.e.,

ffiffiffiffiffi
�S
p � �C).

[40] As discussed in section 7, one fundamentally differ-
ent choice is to sum up the prior distributions �S þ �Cð Þ.
The rationale behind summing up the priors is that each
prior individually represents a different part but together
they are representative of the entire population of the GEV
parameters. Even though we argue that this is not a reason-
able assumption in our case, the third whisker shows the
effect of this choice on the results, for illustration purposes.

The credible bounds are wide because they embrace those
of the spatial expansion (which gives lower flood estimates)
and of the causal expansion (which gives higher flood esti-
mates) together. The fourth and last whisker illustrates the
effect of giving more weight to one of the pieces of infor-
mation, in this case the causal information, on the flood
estimates. Using the combination �S þ 2�Cð Þ does not
change the results. The result would be the same if
2�S þ �Cð Þ were used (not shown here).

9. Discussion

[41] In this paper, we illustrate by example how three
pieces of information (temporal, spatial, and causal) can be
combined with the systematic flood data in a Bayesian anal-
ysis and compare the flood frequency estimations before and
after the extraordinary 2002 flood event in the Kamp catch-
ment in Austria. Figure 10 shows the comparison of the PM
estimates (i.e., Bayesian analogues to the maximum likeli-
hood estimates) and 90% credible intervals of Q100 and
Q1000 if the analyses are made before or after 2002 and con-
sidering the different pieces of information. The figure
allows to directly compare the results of Figures 3, 6, and 8.

[42] By looking at Figure 10, one notices that, when
compared to the temporal and causal expansions, the spatial
information expansion gives (1) the smallest PM estimates
of Q100 and Q1000; (2) a higher difference between the esti-
mates before and after 2002; and (3) narrower confidence
bounds, specially for Q1000. The reason for the low esti-
mates obtained by the spatial information expansion has to
do with the regional data in northern Austria. For most of
the gauging stations of the Kamp region, the local dis-
charges (including the 2002 flood) are higher than the re-
gional estimates. Because of the smaller number of outliers
outside the Kamp region, the quantiles obtained with the
regional information are smaller than those obtained with
the temporal or causal information. Another reason is that,
by deriving the prior distribution of the GEV parameters
from the moments, the GEV shape parameter cannot be
lower than �1/3, for which CS does not exist. This could
be avoided by regionalizing the GEV parameters directly
using topkriging. The highest difference between the esti-
mates before and after 2002 is due to the fact that we use
the topkriging estimates before and after the 2002 event
(we respectively ignore or account for the 2002 event in the
other catchments of the Kamp area), while for the temporal
and causal expansion, we use the same additional informa-
tion in the two cases (before and after 2002).

[43] The causal information places the PM estimates of
Q100 and Q1000 above the values obtained by all other in-
formation. The rainfall-runoff model used by the expert
gives relatively large peak discharges because the catch-
ment consists of porous soils, which fill up above a rain-
fall threshold of about 70 mm and significantly increase
the runoff coefficients [Gutknecht et al., 2002; Komma
et al., 2007; Blöschl et al., 2008]. In addition, with event-
based models, widely used in hydrologic practice, it is
quite common that the design flood method gives signifi-
cantly larger peak flows than flood statistics for the same
catchment, which is related to the usual assumptions made
in the design flood method [Viglione and Blöschl, 2009;
Viglione et al., 2009; Rogger et al., 2012a]. The nature of
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the judgment of the expert also plays a role. With a similar
Bayesian analysis, but for extreme rainfall, Coles and Tawn
[1996] obtain estimates of high return period quantiles
higher than those obtained with maximum likelihood, since
the expert opinion essentially is that events more extreme
than those observed at the site can happen in the region
with nonnegligible probability. In our example, the causal
information expansion is the one that gives the smallest dif-
ference between Q100 and Q1000 estimated before and after
2002. This is because the expert guess for Q500 is the same
in the two cases (we interviewed him only once) and affects
the estimation of high return period quantiles.

[44] Despite the differences in Figure 10, the estimates of
Q100 and Q1000 from the three types of additional information,
all fall within a range that is narrower than that from flood
frequency analysis with systematic data alone. Under the
assumptions made, adding information to the systematic data
reduces the difference between the two estimates substan-
tially (increase the stability of estimation). Temporal, spatial,
and causal expansions, in the example considered in this pa-
per, all provide a significant reduction of the credible bounds
(increase the precision). What has not been analyzed in this
paper is the validity of estimation of the flood frequency
curve and the uncertainty associated with it, i.e., how close is
the estimate to the truth. In the real case example treated
here, we cannot answer this question. Simulations of ‘syn-
thetic realities’ could have been used instead, as for example
those in Kuczera [1982] or Seidou et al. [2006], to compare
the validity of the method and investigate the influence of
prior specifications (or misspecifications) on the estimates,
but we considered a real world case to be more insightful for
the purposes of this paper: i.e., for conveying the message
that combining information from many sources is valuable
not only in theory but also in practice.

[45] The considerations made so far are valid under the
assumptions made, as stated many times in the paper. It is,
therefore, important to discuss these assumptions, at least

the principal ones, and refer to the literature dealing with
them explicitly. For example, regarding the historic floods,
we have assumed that the uncertainties were given by inde-
pendent, nonsystematic errors. The evaluation of the sour-
ces of uncertainties is a delicate issue, as shown by Neppel
et al. [2010], who analyzed recent and historical maxima,
accounting for additive and multiplicative errors affecting
discharge values due to random errors in water-level read-
ings and systematic rating curve errors, respectively. Their
finding is that, as in our case, independent discharge errors
stemming from imprecise knowledge of the water levels
does not appear to impact much on the results, while the
prior for systematic rating curve errors exerts a significant
influence on the estimated quantiles.

[46] When applying the Bayes theorem with historical
floods, we have implicitly assumed stationarity in time, i.e.,
we have assumed that the climate and catchment processes
leading to floods in the historic period are the same as those
leading to floods today. There are ways of incorporating infor-
mation on changes in time in nonstationary models. For exam-
ple, Perreault et al. [2000a, 2000b] consider change-points (in
the mean and variance) in the Bayesian analysis of hydro-
power energy inflow time series; Renard et al. [2006] consider
change-point and linear trend models for flood frequency anal-
ysis; El Adlouni et al. [2007] and Ouarda and El Adlouni
[2011] generalize the generalized maximum likelihood
method of Martins and Stedinger [2000] to the nonstationary
case; and Lima and Lall [2010] account for nonstationarity of
annual maximum floods and monthly streamflows in a re-
gional context with a Bayesian method. Similar to stationarity
in time, an assumption of homogeneity in space has been
made here, i.e., when applying topkriging (and the same would
hold for any other regional model), we assume that the proc-
esses leading to floods in the neighboring catchments are anal-
ogous to those leading to floods in the catchment of interest.

[47] In this paper, the GEV distribution is used as statistical
model for the flood peaks, which has been shown to

Figure 10. Posterior mode estimation (points) and 90% credible bounds (segments) of (a) Q100 and (b)
Q1000 at the Kamp before and after the big 2002 event. In the first case (system) just the systematic flood
data are used. The following cases show the estimates using different pieces of information in addition
to the systematic flood data.
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reproduce the sample frequency distributions of hydrological
extremes around the world [see, e.g., Stedinger et al., 1993;
Vogel and Wilson, 1996; Robson and Reed, 1999; Castellarin
et al., 2001; Coles et al., 2003]. However, if mixed processes
and thresholds occur [Gutknecht et al., 2002; Komma et al.,
2007; Blöschl et al., 2008; Rogger et al., 2012b], other mod-
els should be preferred. In the Kamp catchment, of the maxi-
mum annual floods in the systematic period 37% were long
rain floods, 11% short rain floods, 4% flash floods, 41% rain
on snow floods, and 7% of snow melt floods [Merz and
Blöschl, 2003], while two of the three historic floods were
caused by ice jams associated with heavy rain and snow melt.
A mixture of models could be used to account for the diver-
sity of processes, but the data samples stratified by flood proc-
esses would be too short. Recent literature exists in which
model mixture and/or uncertainty in model selection is
accounted for in a Bayesian framework [e.g., Wood and
Rodriguez-Iturbe, 1975; Perreault et al., 2000a, 2000b;
Renard et al., 2006; Montanari, 2011].

[48] Another issue is the independence of the pieces of in-
formation. Even if in general there are ways to combine non-
independent pieces of information into priors [Genest and
Zidek, 1986], in Bayesian analysis, priors have to be speci-
fied independently from the local data. The topkriging esti-
mates after 2002 at Zwettl, even if in cross-validation mode,
are not fully independent from the 2002 event happening in
the neighboring catchments (see Stedinger [1983], Stedinger
and Tasker [1985], Hosking and Wallis [1988], and Castel-
larin et al. [2005, 2008] for a discussion on the effects of
intersite correlation in regional frequency analysis). Taking
these correlations into account may slightly increase the
width of the credible bounds. However, we expect this effect
to be small, given the similarity between the estimations
with regional information before and after 2002. In addition,
for the causal information expansion, the independence
assumption may not fully apply. When running the rainfall-
runoff model, the expert does not ignore the observed floods
at Zwettl, since the model was calibrated. However, the cali-
bration of the continuous model considers the whole runoff
time series, including minor events and dry periods. There-
fore, the assumption of independence from the maximum
annual peak data is reasonable.

[49] The consistency of information is another assump-
tion made in the Bayesian approach [Gelman et al., 2004;
Laio and Tamea, 2007]. Data (a likelihood function) that
are in conflict with prior information will result in a poste-
rior that is a compromise between the two disparate sources
of information but is in disaccord with both. This is
because likelihood and prior distribution are multiplied.
Nonconsistencies have to be recognized when checking the
results of the analysis. In the sensitivity analysis, for exam-
ple, we checked the effect of departures in the causal infor-
mation (by varying �500 in Figure 9). In the Kamp example,
all pieces of information are reasonably consistent, as can
be inferred by comparing the ranges in Figure 10. In the
case that different pieces of prior information are inconsis-
tent because they are representative of different parts of the
population of the variable of interest, pooling methods exist
that allow to combine them properly (e.g., by linear pooling
as discussed in sections 7 and 8).

[50] In the example reported in this paper, temporal
and spatial information expansions can be considered as

‘‘objective’’, as their use (in the likelihood and as prior) are
based on procedures whose hypotheses can be listed and
openly discussed and scrutinized. The causal information
expansion instead is ‘‘subjective’’ as its specification is based
on personal judgment that is far more difficult to formalize.
Of course, objective causal information could be obtained
from rainfall-runoff model predictions, ideally not mediated
by expert judgment, by rigorously quantifying the associated
uncertainties (in the inputs, model parameters, and struc-
ture). This is a challenge, and there is ongoing research in
the hydrologic literature [see Montanari et al., 2009, and
references therein]. Subjective information, in form of perso-
nal experience, is nevertheless very valuable. However, to
use personal experience in a Bayesian analysis, the experts
have to be ‘‘trained’’ to make probabilistic statements. More
qualified experts may be able to provide more accurate state-
ments, in the sense that their prior mean is closer to the true
value they are trying to predict compared with less qualified
experts, but they may have a tendency to underestimate
uncertainty. This is what Taleb [2007] calls ‘‘epistemic arro-
gance’’, i.e., the difference between what someone actually
knows and how much he thinks he knows. Also, if many
experts are interviewed [e.g., Kirnbauer et al., 1987], it is
not trivial to decide how to combine their opinions [Genest
and Zidek, 1986].

10. Conclusions

[51] The main message of this paper is in line with the
messages of the companion papers of Merz and Blöschl
[2008a, 2008b] in the flood frequency hydrology series:
combining information from many sources is very useful.
While, in the previous papers, the usefulness of combining
many pieces of information is demonstrated by heuristic rea-
soning, it is demonstrated here by Bayesian analysis. Even if
a number of assumptions have been made in this paper, we
believe that the ability of the Bayesian approach to use all
pieces of information in conjunction is a major advantage
over other methods. The way to formalize the hydrological
information into a Bayesian framework is not straightfor-
ward, but possible, as has been shown here through exam-
ples. Expanding information beyond the systematic flood
record is sometimes considered of little value in engineering
hydrology because subjective assumptions are involved. In
the past, most of the national guidelines [e.g., Natural Envi-
ronment Research Council (NERC), 1975; Deutscher Ver-
band f€ur Wasserwirtschaft und Kulturbau (DVWK), 1999]
have therefore involved prescriptive procedures with little
choice for the hydrologists who applies them, while few
have encouraged the use of additional information [see e.g.
U.S. Interagency Advisory Committee on Water Data, 1982,
p. 20, Bulletin 17B]. More recent versions of these guide-
lines [e.g., DWA, 2012] explicitly focus on temporal, spatial,
and causal information to complement the systematic flood
data (see also Stedinger and Griffis [2008], for a discussion
on how Bulletin 17B will be revised).

[52] The results of this study suggest that the additional
information can significantly improve the confidence in
flood frequency estimates. With all the information com-
bined together, our estimated 100 year flood peak at Zwettl
is 250 m3/s with a 90% credible region of 615%. This esti-
mate would have been practically the same in 2001, before
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observing the extraordinary 2002 flood event. The return
period of this event (460 m3/s) would be estimated as 1000
years before the event and 800 years after it with 90% cred-
ible bounds of 500 to 4500 years and 450 to 2300, respec-
tively. This contrasts the estimates of >100,000 years and
340 years with the systematic data alone. While a range of
assumptions need to be made, the final flood estimate is not
much affected by assumptions varying in a reasonable range
because the information provided through combining inde-
pendent sources (temporal, spatial, and causal) may out-
weigh the uncertainty introduced by these assumptions. It is
suggested that complementing systematic flood data by tem-
poral, spatial, and causal information should become the
standard procedure for estimating large return period floods.

Appendix A: From the GEV Moments to the GEV
Parameters

[53] In section 5, it is argued that, in Austria, the loga-
rithms of the maximum annual peak moments ln Mð Þ ¼
ln MAF �ð Þ; ln CVð Þ; ln CSð Þ½ � follow the three-variate nor-

mal distribution:

p ln Mð Þð Þ ¼ 1

2�ð Þ3=2jR ln Mð Þ½ �j1=2
� exp � 1

2
ln Mð Þð

�

�E ln Mð Þ½ �Þ0 R ln Mð Þ½ �ð Þ�1 ln Mð Þ � E ln Mð Þ½ �ð Þ
�
;

(A1)

with mean E ln Mð Þ½ � ¼ E ln MAF �ð Þ½ �;E ln CVð Þ½ �;½
E ln CSð Þ½ �� and covariance matrix:

Because Merz et al. (2008) provided EM½ � and Var M½ �,
and not their logarithms, we used the transformation [see
Kottegoda and Rosso, 1997, pp. 225–227]:

E ln Mð Þ½ � ¼ ln
EM½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var M½ �=EM½ �2 þ 1
q

0
B@

1
CA

Var ln Mð Þ½ � ¼ ln Var M½ �=EM½ �2 þ 1
 �

:

(A3)

While for the covariance terms, we used the sample corre-
lations between the natural logarithm of the three moments
estimated from regional data and indicated in Figure 4. The
trivariate lognormal distribution of the maximum annual
peak momentsM is obtained transforming the normal dis-
tribution of equation (A1) to

p Mð Þ ¼ p ln Mð Þð Þ
jMAF � � CV � CS j ; (A4)

whose bivariate marginals are plotted in Figure 5.

[54] The transformation of the three-variate distribution
p Mð Þ into the prior distribution of the GEV parameters
� hð Þ is

� hð Þ ¼ p M hð Þð Þ � jJ hð Þj; (A5)

where jJ hð Þj is the Jacobian of the transformation h!M.
The transformation h!M is [Stedinger et al., 1993, p.
18.17]

MAF� hð Þ/ �1þ�2 1�G 1þ�3ð Þð Þ=�3 for �3 >�1

CV hð Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

2 G 1þ2�3ð Þ� G 1þ�3ð Þ2
 � �

=�2
3

r
MAF

for �3 >�1=2

CS hð Þ¼ sign �3ð Þ
�G 1þ3�3ð Þþ3G 1þ�3ð ÞG 1þ2�3ð Þ

G 1þ2�3ð Þ� G 1þ�3ð Þð Þ2
 �3=2

þ

2
64

� 2 G 1þ�3ð Þð Þ3

G 1þ2�3ð Þ� G 1þ�3ð Þð Þ2
 �3=2

3
75 for �3 >�1=3;

;

(A6)

where the proportionality in the first equation is due to the
standardization of the MAF values. The corresponding
Jacobian is

jJ hð Þj /
�����

g2 � g2
1

� 	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

2 �g2
1 þ g2

� 	
=�2

3

q
�2 �1 þ �2 1� g1ð Þð Þ=�3ð Þ �g2

1 þ g2

� 	
�
�3 �2g3

1 þ 3g1g2 � g3

� 	
�2g2

1d1 þ 2g2d2

� 	
2 �g2

1 þ g2

� 	5=2

(

þ�6g3
1d1 þ 3g1g2d1 þ 6g1g2d2 � 3g3d3

�g2
1 þ g2

� 	3=2

)�����;
(A7)

with gi ¼ G 1þ i�3ð Þ and di ¼ � 1þ i�3ð Þ, where i ¼ 1; 2; 3,
G xð Þ is the gamma function, and � xð Þ ¼ d

dx ln G xð Þ is the
digamma function.

Appendix B: Partial Information on the GEV
Parameters

[55] In section 6, we argued that the information on Q500

correspond to partial information on the GEV parameters
h ¼ �1; �2; �3½ �. The density h Q500ð Þ provides information

R ln Mð Þ½ � ¼
Var ln MAF �ð Þ½ � Cov ln MAF �ð Þ; ln CVð Þ½ �
Cov ln MAF �ð Þ; ln CVð Þ½ � Var ln CVð Þ½ �
Cov ln MAF �ð Þ; ln CSð Þ½ � Cov ln CVð Þ; ln CSð Þ½ �

Cov ln MAF �ð Þ; ln CSð Þ½ �
Cov ln CVð Þ; ln CSð Þ½ �
Var ln CSð Þ½ �

0
@

1
A: (A2)
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on one parameter given the other two, e.g., on � �1j�2; �3ð Þ,
where

� �1j�2; �3ð Þ ¼ � �1; �2; �3ð Þ
� �2; �3ð Þ :

Because the functional form relating Q500 to the GEV pa-
rameters (g �1; �2; �3ð Þ in equation (7)) is assumed to be
known with certainty, then

� �1j�2; �3ð Þ ¼
Z

all Q500

� �1j�2; �3;Q500ð Þ � h Q500ð ÞdQ500

¼
Z

all Q500

� �1 � �0
1 Q500ð Þ

� �
� h Q500ð ÞdQ500

;

where � x½ � is the Dirac delta function and �0
1 Q500ð Þ is the

value of the scale parameter for which, given �2 and �3,
g �0

1; �2; �3

� 	
¼ Q500. Because � f xð Þ½ � ¼ � x� x0½ �=jf 0 xð Þjx0

,
where f has a single root x0, then

� �1j�2; �3ð Þ ¼
Z

all Q500

� g �1; �2; �3ð Þ � Q500½ �

�
���� @g �1; �2; �3ð Þ

@�1

����
�0

1 Q500ð Þ
� h Q500ð ÞdQ500:

The two terms after the � Dirac function depend on Q500

only; therefore, considering the properties of the � Dirac,
the integral is equal to evaluating these two terms on
g �1; �2; �3ð Þ, i.e., noting that �0

1 g �1; �2; �3ð Þð Þ ¼ �1,

� �1j�2; �3ð Þ ¼
���� @g �1; �2; �3ð Þ

@�1

���� � h g �1; �2; �3ð Þð Þ

Because @g �1; �2; �3ð Þ=@�1 ¼ 1, � �1j�2; �3ð Þ ¼ h g �1;ðð
�2; �3ÞÞ.

[56] Analogously,

� �2j�1; �3ð Þ ¼
���� @g �1; �2; �3ð Þ

@�2

���� � h g �1; �2; �3ð Þð Þ

¼
���� 1� c�3

�3

���� � h g �1; �2; �3ð Þð Þ (B1)

and

� �3j�1; �2ð Þ ¼
���� @g �1; �2; �3ð Þ

@�3

���� � h g �1; �2; �3ð Þð Þ

¼
���� �2

�3

1� c�3

�3
þ c�3 ln c

� ����� � h g �1; �2; �3ð Þð Þ
; (B2)

where c ¼ ln 500= 500� 1ð Þð Þ.
[57] During the MCMC random walk, �1, �2, and �3 are

given at each step and either � �1j�2; �3ð Þ, � �2j�1; �3ð Þ, or
� �3j�1; �2ð Þ can be used by the MCMC analysis to compute
the posterior distribution of the parameters. There is, there-
fore, a subjective choice involved, i.e., for what parameter
is the information on Q500 used. However, by applying the
procedure to the case study considered in this paper, we

found that this choice has no significant effect on the results
(not shown here).

[58] In the analyses in this paper, we have used
� �1j�2; �3ð Þ ¼ h g �1; �2; �3ð Þð Þ. Although the information is
partial, one can see h g hð Þð Þ as a whole prior (although an
improper one) by noting that � �1; �2; �3ð Þ ¼ � �1j�2; �3ð Þ�
� �2; �3ð Þ ¼ h g �1; �2; �3ð Þð Þ � 1 � 1, because flat priors are
used for �2 and �3.
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