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Abstract. This is the third of a three-part paper series
through which we assess the performance of runoff predic-
tions in ungauged basins in a comparative way. Whereas the
two previous papers byParajka et al.(2013) and Salinas
et al.(2013) assess the regionalisation performance of hydro-
graphs and hydrological extremes on the basis of a compre-
hensive literature review of thousands of case studies around
the world, in this paper we jointly assess prediction perfor-
mance of a range of runoff signatures for a consistent and rich
dataset. Daily runoff time series are predicted for 213 catch-
ments in Austria by a regionalised rainfall–runoff model and
by Top-kriging, a geostatistical estimation method that ac-
counts for the river network hierarchy. From the runoff time-
series, six runoff signatures are extracted: annual runoff, sea-
sonal runoff, flow duration curves, low flows, high flows and
runoff hydrographs. The predictive performance is assessed
in terms of the bias, error spread and proportion of unex-
plained spatial variance of statistical measures of these sig-
natures in cross-validation (blind testing) mode. Results of
the comparative assessment show that, in Austria, the pre-
dictive performance increases with catchment area for both
methods and for most signatures, it tends to increase with
elevation for the regionalised rainfall–runoff model, while
the dependence on climate characteristics is weaker. Annual
and seasonal runoff can be predicted more accurately than
all other signatures. The spatial variability of high flows in
ungauged basins is the most difficult to estimate followed by
the low flows. It also turns out that in this data-rich study in
Austria, the geostatistical approach (Top-kriging) generally
outperforms the regionalised rainfall–runoff model.

1 Introduction

Even in highly monitored areas, only a fraction of catch-
ments possess a stream gauge where water levels are gauged,
which are then transformed into runoff, i.e. the volume of
water per unit time that flows through a cross section of
a stream. All other stream sections are ungauged, and yet
runoff information is needed almost everywhere people live
for a multitude of purposes such as water resources manage-
ment, assessment of hydropower potential, design of spill-
ways, culverts, dams and levees, for reservoir management,
river restoration, water quality issues, etc. The only recourse
is therefore to predict runoff in these catchments or locations
using alternative data or information (Sivapalan et al., 2003;
Hrachowitz et al., 2013). This is notoriously a difficult task
because the predictive uncertainties tend to be large relative
to the magnitude of the runoff to be predicted. These un-
certainties are due to many reasons. Hydrological processes
have enormous spatiotemporal variability, which is difficult
to capture (Grayson and Bl̈oschl, 2000). Any stream gauge
may be far from the ungauged basin of interest and there
may be uncertainties in the collected data (Montanari, 2007).
Moreover predictive errors of methods arise from data uncer-
tainties, model structure uncertainties and model parameter
uncertainties (Montanari, 2011).
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The objective of this and two companion papers (Parajka
et al., 2013; Salinas et al., 2013) is to assess the predictive
performance of methods for runoff prediction in ungauged
basins. In order to estimate the total uncertainty to be ex-
pected, a “comparative assessment” is performed, i.e. pre-
dictions are tested against independent data simultaneously
in many catchments through leave-one-out cross validation
(Efron and Gong, 1983). Testing the predictions against inde-
pendent data in many catchments provides insights on where
particular methods work best and what factors control the
performances. Moreover, testing the predictions against in-
dependent data is one way of testing our hypotheses on how
runoff response of catchments works.

The runoff response of catchments constitutes an interest-
ing, complex temporal pattern of water fluxes, which are the
result of the collective behaviour of a great number of com-
ponents of the catchment in response to precipitation and
evaporation. The heterogeneity of the meteorological input,
the structure of the landscape, the distribution of the vege-
tation and human intervention, all determine the spatial and
temporal variability of the catchment’s hydrologic response.
FollowingJothityangkoon et al.(2001), the temporal patterns
of runoff response of catchments are termed runoff “sig-
natures” (see alsoSivapalan, 2005; Wagener et al., 2007).
This paper focuses on assessing how well existing methods
are able to capture different runoff signatures in ungauged
basins. We consider six signatures, each of them meaningful
of a certain class of applications of societal relevance: annual
runoff, seasonal runoff, flow duration curves, low flows, high
flows and runoff hydrographs (Fig.1).

Annual runoff is a reflection of the catchment dynamics
at relatively long timescales, which is particularly evident in
its between year variability (Fig.1a). It is related to the hy-
drological problem of how much water is available (see e.g.
McMahon et al., 2011), which is fundamental for water man-
agement purposes such as water allocation, long-term plan-
ning, groundwater recharge, etc. Seasonal runoff reflects the
within-year variability (Fig.1b). It addresses the question of
when water is available throughout the year (see e.g.Sauquet
et al., 2008; Hannah et al., 2011) and is necessary to plan wa-
ter supply, hydropower production and river restoration mea-
sures. The flow duration curve represents the full spectrum
of variability in terms of their magnitudes (Fig.1c). It mea-
sures for how many days in a year water is available (Vo-
gel and Fennessey, 1994, 1995) and is the basis of studies
on river ecology, hydropower potential, industrial, domestic
and irrigation water supply. Low flows focus on the low end
of that spectrum, and so provide a window into catchment
dynamics when there is little water in the system, and high
flows are at the opposite end, when there is much water in the
system (Fig.1d–e). Low flow statistics (Smakhtin, 2001) are
needed to estimate environmental flows for ecological stream
health, for drought management, river restoration, dilution of
effluents, etc. High flow (flood) statistics (Merz and Bl̈oschl,
2008a,b), instead, are required for the design of spillways,

culverts, dams and levees, for reservoir management, river
restoration and risk management. Hydrographs are a com-
plex combination of all other signatures (Fig.1f). They are
the most detailed signatures of how catchments respond to
water and energy inputs (Parajka et al., 2013). They can be
used for all the applications listed above and are specifically
needed when the dynamics of runoff have to be taken into
account, such as for water quality studies.

Predicting runoff signatures in ungauged basins, and as-
sessing the uncertainties of these predictions, is therefore es-
sential for the water resources issues discussed above. While
Parajka et al.(2013) andSalinas et al.(2013) assess the pre-
dictive performance of estimation of runoff hydrographs, low
flows and floods separately, the focus of this paper is on the
predictive performance of estimation on many runoff sig-
natures jointly. The methodology used in this paper differs
from the two companion papers also in thatParajka et al.
(2013) andSalinas et al.(2013) perform the comparative as-
sessment based on a literature review of many studies from
all around the world, which has the advantage of covering
a wide range of climates and catchment characteristics, but
the disadvantage of comparing different methods applied to
different catchments with different data. In this paper, in-
stead, the comparison is based on one consistent dataset in a
particularly data-rich region (i.e. 213 catchments in Austria,
see Sect.2). We consider one process-based and one statis-
tical method for predicting runoff hydrographs (Sect.3) and
we assess the predictive performance on measures of the six
runoff signatures discussed above (Sect.4). Specifically, the
following questions are addressed in Sect.5: (i) how well
can runoff signatures be predicted in Austria? (ii) In what
way does the predictive performance depend on climate and
catchment characteristics? (iii) What is the relative perfor-
mance of the predictions of different signatures? (iv) What
is the relative performance of statistical and process-based
methods?

2 Study area

For regionalisation of runoff hydrographs, and for the as-
sessment of method performances, daily runoff observations
from a total of 213 stream gauges are used. The 213 catch-
ments are assumed representative of the hydrological vari-
ability across Austria and their stream gauge position is
shown in Fig.2. The colour of the stream gauges in Fig.2 in-
dicates the aridity index (ratio of mean annual potential evap-
oration vs. mean annual precipitation), which varies from 0.2
to 1.0 meaning that there is no really arid catchment in the
dataset (i.e. potential evaporation is everywhere lower than
precipitation). The largest precipitation rates of more than
2000 mmyr−1 occur in the west, mainly due to orographic
lifting of northwesterly airflows at the rim of the Alps (see
the elevation map in Fig.2), which causes the highest hu-
midity in the west of the country. Precipitation is lowest in
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Fig. 1.Six signatures of runoff variability for two catchments: Lech at Steeg (area of 248 km2, median elevation of 1944 m a.s.l. and mean an-
nual precipitation of 1520 mmyr−1) in the western Alps (black lines) and Raab at Feldbach (area of 689 km2, median elevation of 470 m a.s.l.
and mean annual precipitation of 846 mmyr−1) in southeastern Austria (red lines). The six signatures are quantified by(a) distribution of
annual runoff;(b) seasonal runoff regime (Pardé coefficient) and 90 % confidence bounds;(c) annual flow duration curve normalised by the
mean annual runoff (and 90 % confidence bounds);(d) distribution of annual low flows normalised by the mean annual runoff;(e)distribution
of maximum annual daily flows normalised by the mean annual runoff; and(f) runoff hydrographs. The pictures are representative of the
landscape of the two catchments, whose position is shown in Fig.2.

the lowlands of the east, and the contrast with the Alps is
exaggerated by the higher evaporation in the east. This is
clearly the case for the two example catchments in Fig.1.
The black curve in Fig.1a represents the frequency distri-
bution of annual runoff in a mountainous catchment in the
western Austrian Alps, the Lech at Steeg (see Fig.2 for the
geographical location) indicating much higher annual runoff
than the red curve referring to the Raab at Feldbach, a low-
land/hilly catchment in the southeast of Austria.

The seasonality of runoff is very pronounced in the moun-
tainous catchments (e.g. Fig.1b, black line) where runoff
maxima occur in summer because of snow accumulation and
melt processes. In the lowlands of the east, the runoff sea-

sonality is the result of the interplay between the seasonal-
ity of precipitation and evaporation and is less marked (e.g.
Fig. 1b, red line). Snowmelt in the Alpine west also leads
to flow duration curves that are steep in their central part
(Fig.1c, black line). In the southeastern catchment the central
parts of the flow duration curve is particularly flat (Fig.1c,
red line), which is due to the flashy nature of runoff in the
region, due to both convective precipitation and responsive
soils (Gáal et al., 2012). This suggests a higher variability
of the extremes, which is reflected in the steeper frequency
distributions of low flows (Fig.1d) and floods (Fig.1e) for
the lowland catchment (red lines). The small low flows in the
east occur in summer and are related to the seasonality of

www.hydrol-earth-syst-sci.net/17/2263/2013/ Hydrol. Earth Syst. Sci., 17, 2263–2279, 2013
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Fig. 2. Topography and river network of Austria and location of 213 streamgauges considered in this study (points) colour-coded according
to catchment aridity. The two catchments in Fig.1 are indicated by the black and red boxes and boundary lines.

runoff with minima in summer. In the Alps in the west there
are also small low flows but they occur in winter and are due
to snow deposition in the catchments instead of rain. More
detailed statistics of the catchment characteristics and runoff
signature measures are reported in Table1.

3 Regionalisation methods

Many regionalisation methods for runoff prediction in un-
gauged basins exist (see e.g.Hrachowitz et al., 2013). In gen-
eral terms, we consider them belonging to two different cat-
egories: statistical and process based. Statistical methods use
available runoff time series data from neighbouring catch-
ments (donor catchments) to estimate runoff signatures at un-
gauged locations based on one or more similarity measures
and/or grouping methods. They usually do not use precipi-
tation data in a causal way. In contrast, process-based meth-
ods use precipitation data (and other climate data) to esti-
mate runoff based on water balance equations, i.e. they are
based on some variant of rainfall–runoff models. Hereafter
we present briefly the two methods used in this study.

3.1 Process-based method: rainfall–runoff model

There is a wide variety of rainfall–runoff models, ranging
from physics-based models based on laboratory-scale equa-
tions to index-based models and lumped conceptual models
(Singh and Frevert, 2005). As noted inParajka et al.(2013)
there are very few studies that have actually examined what
model structure would be appropriate for a particular catch-
ment or landscape, to assist in model structure selection for
an ungauged catchment (Smith et al., 2004; Reed et al., 2004;

Fenicia et al., 2011). Choice of model structure is there-
fore usually guided by prior knowledge of the hydrologic
system, the availability of data, and prior experience of the
practitioner. In this paper we use a semi-distributed concep-
tual rainfall–runoff model which follows the structure of the
Hydrologiska Byr̊ans Vattenbalansavdelning (HBV) model
(Bergstr̈om, 1995) and which has been used in Austria for
quite a long time now (see e.g.Merz and Bl̈oschl, 2004; Para-
jka et al., 2005, 2007b; Merz et al., 2011). The model runs on
a daily time step and consists of a snow routine, a soil mois-
ture routine and a flow routing routine. The detailed descrip-
tion of the model concept is given, e.g. in the Appendix of
Parajka et al.(2007b). The climate model inputs (daily pre-
cipitation and air temperature) have been obtained by spatial
interpolation of daily observations using elevation as aux-
iliary variable (seeMerz et al., 2011). The potential evap-
oration is estimated by a modified Blaney–Criddle method
(Parajka et al., 2005) using interpolated daily air temperature
and grid maps of potential sunshine duration (Mésźarǒs et al.,
2002). The dataset used in this study includes measurements
of daily precipitation and snow depths at 1091 stations and
daily air temperature at 212 climatic stations (Parajka et al.,
2005, 2007a). The model inputs are extracted for 200 m ele-
vation zones and used for runoff model simulations in each
catchment.

From a total of 14 model parameters, 11 are estimated by
using automatic model calibration against observed runoff
and accounting for a priori information of the model pa-
rameters (seeMerz et al., 2011, Sect. 3.2). Temporal vali-
dation has been performed byParajka et al.(2005); Merz
et al.(2009, 2011) to make sure that the chosen parameterisa-
tions give adequate results in an independent test (validation)

Hydrol. Earth Syst. Sci., 17, 2263–2279, 2013 www.hydrol-earth-syst-sci.net/17/2263/2013/
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Table 1. Attributes and signature measures for the 213 Austrian catchments in Fig.2. The signature measures have been calculated from
observed daily runoff for the period 1976 to 2008 as explained in Sect.4.1.

mean CV min 25 % median 75 % max

Area (km2) 411 2.08 13.7 75.8 167 342 6214
Median elev. (m a.s.l.) 1067 0.531 287 606 905 1449 2964
Mean ann. prec. (mmyr−1) 1201 0.268 605 945 1143 1448 2112
Aridity index (–) 0.511 0.368 0.196 0.371 0.463 0.664 0.979

(a) Mean ann. runoffQm (mmyr−1) 869 0.600 170 435 790 1160 2604
(b) Range of Pard́e coeff.1Par (–) 0.110 0.451 0.0320 0.0716 0.102 0.140 0.275
(c) Slope of FDCmFDC (%/%) 1.46 0.306 0.668 1.16 1.38 1.64 3.13
(d) Normalised low flowq95 (–) 0.277 0.399 0.0250 0.197 0.276 0.343 0.631
(e) Normalised high flowq05 (–) 2.68 0.159 1.58 2.37 2.65 2.94 4.06
(f) Integral scaleτ1/e (days) 19.8 0.863 2 4 13 37 59

period as stressed byKleměs (1986), Andréassian et al.
(2009), and Gharari et al.(2013), among others. The me-
dian Nash–Sutcliffe efficiency (see Eq.6 for its definition)
decreases from 0.72 to 0.66 from calibration to validation
period (see Table 2 inParajka et al., 2005). Note that, in this
paper, although the assessment focuses on the runoff signa-
tures, the model has not been calibrated to them, which is
what other authors do (see e.g.Yadav et al., 2007; Hingray
et al., 2010).

For predictions in ungauged sites, however, calibration
to observed runoff is not an option, so the model parame-
ters need to be estimated (regionalised) by using informa-
tion from other gauged catchments (Parajka et al., 2013,
summarise and compare different approaches used for trans-
ferring model parameters to ungauged catchments). In this
study, we apply the similarity based approach introduced in
Parajka et al.(2005). This regionalisation method is based
on the idea to find a donor catchment that is most simi-
lar to the ungauged site in terms of its catchment attributes
(mean catchment elevation, stream network density, lake in-
dex, areal proportion of porous aquifers, land use, soils and
geology). The complete parameter set from the donor catch-
ment is then transposed to the ungauged catchment and used
for modelling of water balance including runoff (seePara-
jka et al., 2005, 164–165 pp.). The goodness-of-fit of the
rainfall–runoff model simulations in the calibration period
1976–2008 gives a median Nash–Sutcliffe efficiency of 0.72
for the entire hydrographs in the 213 sites in Fig.2. The per-
formance in cross-validation mode for the same period 1976–
2008 gives a median Nash–Sutcliffe of 0.61. This is not much
worse than the goodness-of-fit in the calibration period, even
though it includes the uncertainties of the model and of the
parameter regionalisation method (Montanari, 2011).

3.2 Statistical method: Top-kriging

The main advantage of statistical methods of estimating
runoff in ungauged basins is that they avoid the use of un-

certain input variables such as precipitation and potential
evaporation. In this paper we use Top-kriging (Skøien et al.,
2006), which is a geostatistical method that accounts for the
river network hierarchy (see alsoGottschalk, 1993; Sauquet
et al., 2000; Gottschalk et al., 2006, for similar methods).
Top-kriging combines two processes: local runoff genera-
tion, which is continuous in space, and runoff aggregation
and routing along the stream network. The method requires
a variogram for local (point) runoff generation. The vari-
ogram is then integrated over the catchment areas associated
with each river cross section (see e.g.Skøien et al., 2006;
Merz et al., 2008). This integrated variogram depends on
the point variogram as well as the sizes and the relative po-
sitions and nestedness of the catchments. The assumption
of a best linear unbiased estimator then gives the kriging
weights which are used to estimate the daily runoff for each
ungauged basin from the observed daily runoff of neigh-
bouring stations on the same day, weighted by the kriging
weights. Top-kriging also provides estimates of the kriging
variance. The uncertainties involved are discussed inSkøien
and Bl̈oschl(2006a,b, 2007).

For the Top-kriging estimation, daily runoff observations
from the 213 stream gauges in Fig.2 and Table1 are used.
A number of variograms have been tested and the variograms
used inSkøien et al.(2006) andMerz et al.(2008) fit the case
of runoff time series well. The cross-validation performance
for hydrograph regionalisation in the period 1976–2008 gives
a median Nash–Sutcliffe of 0.87, higher than for the process-
based method.

As an illustration, Fig.3 shows the result of Top-kriging
for the extreme August 2002 flood (seeGutknecht et al.,
2002; Komma et al., 2007; Blöschl et al., 2008; Reszler et al.,
2008; Viglione et al., 2010a, 2013, for details on the event).
The 2002 event covered a large area of northern Austria. It
consisted of two frontal type storms, both produced by Vb
cyclones (Ulbrich et al., 2003; Mudelsee et al., 2004), which
are a typical meteorological situation for long rain events in
the region. Even though the rainfall depth associated with the

www.hydrol-earth-syst-sci.net/17/2263/2013/ Hydrol. Earth Syst. Sci., 17, 2263–2279, 2013
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second storm was lower than in the first storm in most parts
of the region, the second storm produced larger flood dis-
charges (see 12 and 13 August in Fig.3) because of catch-
ment saturation due to the previous event. The maps in Fig.3
allow one to appreciate the spatiotemporal evolution of the
2002 flood event, in particular the movement of the runoff-
contributing areas from west to east on the 12 and 13 of
August where most of the damage in Austria occurred.

4 Method for the comparative assessment

In order to assess the performance of the predictive meth-
ods in capturing the temporal and spatial variability of runoff
in Austria, runoff hydrographs are estimated for each of the
213 catchments in Fig.2 without using runoff data from
that basin, i.e. the catchments are treated as ungauged. Sta-
tistical measures of the six signatures discussed above are
then extracted from the observed and predicted hydrographs
(Sect.4.1), and are compared through different performance
measures (Sect.4.2). This procedure is known as leave-one-
out cross validation (Efron and Gong, 1983) and allows for
an independent validation of each methodology used to pro-
vide predictions in ungauged basins, rather than enabling just
a goodness of fit of a particular regionalisation method. It can
be therefore seen as a measure of the total predictive uncer-
tainty in runoff prediction in ungauged basins.

4.1 Signature measures

There are many ways of quantifying each runoff signature.
For instance, in Fig.1 the signatures are quantified by curves.
For the comparative assessment, in this paper we quantify the
signatures by single values. Given the time series of observed
(or simulated) specific daily runoffQd(t) (mmd−1), the fol-
lowing statistics are calculated:

a. the mean annual specific runoff (mmyr−1):

Qm = 365· Qd =
365

T

T∑
t=1

Qd(t), (1)

whereQd is the mean daily specific runoff (mmd−1)
andT (days) is the record length (corresponding to 33 yr
in our case);

b. the range of Pard́e coefficients (–):

1Par= max(Pari) − min(Pari), (2)

where Pari , the Pard́e coefficient for monthi, is defined
as the mean monthly runoff volume for the monthi di-
vided by the mean annual runoff volume (

∑12
i=1Pari =

1). We calculate it as

Pari =

∑
t∈Mi

Qd(t)∑
∀t Qd(t)

, (3)

wheret ∈ Mi means all time steps (days) belonging to
the monthi and∀t means all time steps, from 1 toT ;

c. the slope of the flow duration curve (%/%):

mFDC = 100·
Q30%− Q70%

40· Qd
, (4)

whereQ30% (mmd−1) is the value of daily runoff which
is exceeded 30 % of the time (on average, around 110
days a year) andQ70% 70 % of the time (on average,
around 255 days a year).mFDC is a measure of slope of
the central part of the flow duration curve and indicates
the percentage of increase of runoff, with respect to the
annual mean, for 1 % decrease of exceedance probabil-
ity;

d. the normalised low flow statistic (–) calculated asq95 =

Q95%/Qd whereQ95% (mmd−1) is the value of daily
runoff which is exceeded 95 % of the time (on average,
around 347 days a year);

e. the normalised high flow statistic (–) calculated asq05 =

Q5%/Qd whereQ5% (mmd−1) is the value of daily
runoff which is exceeded 5 % of the time (on average,
around 18 days a year);

f. the integral scaleτ1/e (days) calculated as the time lag
at which the autocorrelation function drops below 1/e ∼

0.368. The autocorrelation function has been estimated
with the function “acf” in R (R Core Team, 2012). The
integral scale is a raw measure of the runoff hydrograph
memory (see e.g.Blöschl and Sivapalan, 1995, p. 255
and reference therein).

Some aggregated statistics of these signature measures are
listed in Table1. Most of the signatures are normalised by
the mean (daily) runoff. The rationale for this normalisation
is that we aim at assessing the capability of the methods to
estimate the volume of runoff once (i.e.Qm) and the vari-
ability of runoff independently of the volume for the other
signatures.

Figure 4 illustrates the spatial variability of the six sig-
nature measures in Austria. The figure has been obtained
by Top-kriging starting from 213 observed runoff time se-
ries in the locations in Fig.2. In Austria, the spatial patterns
observed in these runoff signatures can be traced back to a
fairly small subset of key processes, particularly: the role of
snow, the absolute volume of precipitation, the seasonality
of precipitation and evaporation, and subsurface storage. For
example, the snow dynamics in the western Alpine part of
Austria are responsible for the pronounced seasonality, the
steep flow-duration curves, the winter minima in low flows,
and finally for the long integral timescales of runoff. The
large volumes of runoff in western Austria, however, relate
not to snow, but to the effects of orographic lifting of north-
westerly airflows at the rim of the Alps, leading to precipita-
tion rates of more than 2000 mm yr−1. Precipitation is lowest
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Fig. 3. Maps of daily runoff obtained by regionalising observed runoff time series through Top-kriging (Sect.3.2). The figure illustrates the
extreme flood of August 2002 in northern Austria.

in the lowlands of the east, and the contrast with the Alps
is exaggerated by higher evaporation (see also Fig.1). The
role of evaporation in the east is in phase with precipitation
maxima in summer, leading to low seasonality of runoff in
the absence of snow processes. Otherwise, the role of the
catchment morphology and geology in shaping hydrologi-
cal signatures is most obvious in the flow duration curve
and the runoff hydrograph. Aside from snow-dominated ar-
eas, flashy locations are associated with convective precipi-
tation and rapidly draining soils: in these regions the integral
timescale of runoff is short, and the duration curves are flat.
Slow dynamics in the hydrograph also arise in regions with
highly pervious geology (as in the south of Austria), and are
also reflected in large low flows and small floods.

4.2 Performance measures

We assess the performance of the methods by three statistical
metrics.

1. The normalised error, which is defined as

NEi =
ŷi − yi

yi

, (5)

where yi is the observed signature at thei th catch-
ment (i from 1 to 213) andŷi is the estimated signa-
ture. It expresses the error of estimation relative to the
observed signature for catchmenti. Its spatial median
ÑE is a measure of (spatial) bias of estimation in Aus-
tria. A positive (negative) value of̃NE means that, on
average, the method overestimates (underestimates) the
signature of interest.

2. The absolute normalised error, which is defined as
ANEi = |NEi | for catchmenti. The spatial median
ÃNE is a measure of the average spread of the estima-
tion error. A low value of̃ANE (close to 0) means that,
on average, the percentage error of estimation at a catch-
ment is low (i.e. the efficiency of the method is high).
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Fig. 4. Connection of runoff signatures for ungauged basins in Austria. The maps have been obtained by regionalising daily runoff time
series through Top-kriging (Sect.3.2) and extracting the six signatures of Sect.4.1: (a) mean annual runoff,(b) range of Pard́e coefficients,
(c) slope of the flow duration curve,(d) normalised daily runoff value which is exceeded 95 % of the time as a measure of low flows,(e)
normalised daily runoff value which is exceeded 5 % of the time as a measure of high flows,(f) and integral timescale. Ellipses and arrows
help the description of connectivity between process and response provided in the text.

3. The coefficient of determination, which is defined as

R2
= 1−

∑
i(ŷi − yi)

2∑
i(yi − ȳ)2

, (6)

where ȳ is the spatial average of the observed signa-
ture yi over the 213 catchments. A highR2 (close to
1) means that the method captures well the spatial vari-
ability of the signature in Austria. Note that Eq. (6) is
a general definition of the coefficient of determination
and corresponds to the squared Pearson correlation co-
efficient if ŷi are estimated through linear least squares
regression. When applied to time series (e.g.yi and ŷi

are observed and estimated runoff at timei) the coeffi-
cient of determination calculated with Eq. (6) is known
as Nash–Sutcliffe efficiency (Nash and Sutcliffe, 1970;
Schaefli and Gupta, 2007).

BothR2 andÃNE measure the performance of the methods.
The main differences between these two efficiency measures

are (i) the methods’ efficiency increases with increasingR2

(R2
= 1 means perfect fit) and with decreasing̃ANE (if in

at least 50 % of the cases the fit is perfect, theñANE = 0);
(ii) in R2 the errors are scaled by the spatial variance of the
signature, while ANEi scales the errors locally by the ob-
served value and̃ANE is a measure of the spatial average of
the error. This means that small (and therefore good)̃ANE
could correspond to small (and therefore bad)R2 if the spa-
tial variability of the signature is small, but the spatial aver-
age is large; (iii) inR2 the errors are squared, therefore a big
weight is given to the largest errors, while iñANE the abso-
lute errors are considered and, taking the median, the largest
errors have no weight on the measure.

While ÃNE refers to the expected error for the estimation
in a particular ungauged catchment (which is of interest for
local studies),R2 measures as well the regional pattern that

Hydrol. Earth Syst. Sci., 17, 2263–2279, 2013 www.hydrol-earth-syst-sci.net/17/2263/2013/



A. Viglione et al.: Part 3: Runoff signatures in Austria 2271

is captured by the method (which is of interest for regional
studies).

5 Results

5.1 How well can runoff signatures be predicted in
Austria?

Figure 5 shows the simulated runoff signatures for the
213 catchments using the process-based method (rainfall–
runoff model with parameters regionalised by the similarity
method). The spread around the 1: 1 line is a measure of how
well the runoff signatures are estimated in ungauged catch-
ments. For the case of mean annual specific runoff (Fig.5a)
the highest errors (in mmyr−1) tend to occur in the wetter
catchments and the model tends to underestimate the mean
annual runoff. The coefficient of determinationR2 is 0.86,
meaning that the unexplained spatial variance is relatively
low. The median absolute normalised error̃ANE is less than
10 %, meaning that, on average, the local error of estima-
tion of mean annual runoff is relatively low. For the range
of Pard́e coefficients (Fig.5b), R2 is lower than in the case
of Fig. 5a and bias and spread of the points around the 1: 1
line are wider, resulting iñNE = −7.2 % andÃNE = 13 %.
A slightly lower performance is obtained for the slope of the
flow duration curves (Fig.5c) for whichR2

= 0.63 and bias
and average spread of the errors are similar to the ones for
the range of Pard́e coefficients (̃NE = −8.1 % andÃNE =

14 %). The process-based method tends to underestimate the
slope of the flow duration curves likely because an automatic
model calibration has been used (Merz et al., 2011), which
is more focused on timing of runoff peaks and low flow re-
cession rather than to flows representing the central part of
the flow duration curve. Other results would have probably
been obtained from other objective functions in the calibra-
tion stage (Kollat et al., 2012; Montanari and Toth, 2007; Wa-
gener and Montanari, 2011).

Compared to all other signatures,R2 is much lower for low
flows (Fig.5d) and high flows (Fig.5e). Even thoughR2 is
lower for high flows than for low flows,̃ANE is much lower
(the performance is higher) for high flows probably because
errors are normalised by the higher observedq05 values. Fig-
ure5f shows observed vs. estimated integral scales of runoff
time series in log–log scale. The integral scale is signifi-
cantly overestimated for flashier catchments, i.e. where the
observed integral scale is small, and, overall,̃NE andÃNE
have the greatest values encountered so far. However,R2 is
relatively high because the observed spatial range is high and
therefore easily captured by the model.

Figure 6 is analogous to Fig.5 but, here, the statistical
method (Top-kriging) is used for regionalisation. For the case
of annual specific runoff (Fig.6a) the method is slightly bi-
ased (̃NE = 3 %) and the highest errors (in mmyr−1) occur
in the wetter catchments. The coefficient of determination

R2 is 0.88, meaning that the unexplained spatial variance is
relatively low. The median absolute normalised error̃ANE
is below 10 %, meaning that, on average, the local error of
estimation of mean annual runoff is relatively low. For the
range of Pard́e coefficients (Fig.6b) the values ofR2 and
ÃNE are similar, and also in this case the highest errors oc-
cur in wet catchments (blue points) where the method un-
derestimates1Par. Similar results are obtained for the slope
of the flow duration curves (Fig.6c) while for low flows
(Fig. 6d) R2 is significantly lower (0.61), there is a positive
bias (̃NE = 6.1 %), andÃNE is significantly higher (greater
than 10 %). This means that the unexplained spatial variance
of q95 is relatively high and that the percentage error one
makes for individual estimations (relative to the observed
q95) is on average also high. Also for high flows (Fig.6e)
R2 is low, but ÃNE is much lower than for low flows be-
cause there is little bias (̃NE = −1.1 %) and the errors are
normalised by the higher observedq05 values. For the inte-
gral scale (Fig.6f), the estimation is unbiased but the spread
around the line is quite large (and thereforẽANE is high).R2

is relatively high because of the large observed spatial range.
The main difference between the two regionalisation meth-
ods is that the process-based method produces more biased
estimates than the statistical method and the scatter is larger
for most of the signatures, which is evident from visual in-
spection of Figs.5 and6.

5.2 In what way does the predictive performance
depend on climate and catchment characteristics?

Table 2 reports the Spearman correlation coefficients (see
e.g., Kottegoda and Rosso, 1997, p. 281) between the ab-
solute normalised error and several catchment attributes of
the 213 Austrian catchments for each runoff signature and
for the two methods used. Through this analysis the “depen-
dence” of predictions on climate and catchment characteris-
tics is meant not necessarily as causality but as correlation.
The correlations that are significant at 5 % significance level
are indicated in bold.

High correlations are obtained with catchment area. Fig-
ure 7 shows the absolute normalised error ANE for the
213 catchments plotted vs. catchment area for the signa-
tures regionalised using the process-based model. Each point
corresponds to a catchment. The black line represents the
moving window median ANE (considering 10 neighbouring
catchments in terms of area) and the grey shading its mov-
ing window’s 25 and 75 % quantiles, all smoothed through
a cubic smoothing spline (function “smooth.spline” in R;R
Core Team, 2012). The increase of performance with area is
clear for high flows (Fig.7e) and particularly for low flows
(Fig. 7d), consistently with Table2. An increase of perfor-
mance can be noticed for the integral scale as well, even
though the errors are much more scattered. For mean annual
runoff, the range of the Pardé coefficients and the slope of the
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Fig. 5.Observed vs. simulated signatures using the process-based (PB) method in cross-validation mode for the period 1976–2008:(a) mean
annual specific runoff (mmyr−1), (b) range of the Pard́e coefficient (–),(c) slope of the normalised flow duration curve (%/%),(d) normalised
flow duration curve value which is exceeded 95 % of the time (–),(e) normalised flow duration curve value which is exceeded 5 % of the
time (–),(f) integral scale (days) in log–log scale. The colour of the points indicates the catchment aridity (blue-wet vs. red-dry) as in Fig.2.
The coefficient of determinationR2, the median normalised error̃NE and the median absolute normalised error̃ANE (as percentages) are
given. The two catchments in Fig.1 are indicated by the black and red boxes.
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Fig. 6. Observed vs. simulated signatures using Top-kriging (TK) in cross-validation mode for the period 1976–2008:(a) mean annual
specific runoff (mmyr−1), (b) range of the Pard́e coefficient (–),(c) slope of the normalised flow duration curve (%/%),(d) normalised flow
duration curve value which is exceeded 95 % of the time (–),(e) normalised flow duration curve value which is exceeded 5 % of the time
(–), (f) integral scale (days) in log–log scale. The colour of the points indicates the catchment aridity (blue-wet vs. red-dry) as in Fig.2. The
coefficient of determinationR2, the median normalised error̃NE and the median absolute normalised error̃ANE (as percentages) are given.
The two catchments in Fig.1 are indicated by the black and red boxes.
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Table 2.Spearman correlation coefficient between the absolute normalised error and catchment attributes for the 213 Austrian catchments.
In bold are marked the significant correlations at 5 % significance level (two sided test with the function “cor.test” in R;R Core Team, 2012).
The process-based (PB) method and the Top-kriging (TK) method results are printed on the same columns separated by a slash.

Area Median elev. Mean slope Network dens. Topo. index Mean ann. prec. Aridity index
PB/TK PB/TK PB/TK PB/TK PB/TK PB/TK PB/TK

(a) Mean ann. runoffQm −0.09/−0.08 0.18/0.03 0.21/0.09 −0.26/−0.15 −0.21/−0.05 0.20/0.05 −0.21/0.00
(b) Range of Pard́e coeff.1Par −0.02/−0.20 −0.15/−0.11 −0.13/−0.05 −0.12/0.04 0.13/0.09 0.05/0.10 0.07/0.01
(c) Slope of FDCmFDC 0.02/−0.11 −0.13/−0.06 −0.14/−0.07 −0.03/0.03 0.12/0.11 −0.05/0.01 0.12/0.05
(d) Normalised low flowq95 −0.29/−0.39 0.00/−0.09 0.00/−0.05 −0.13/−0.02 −0.07/0.01 0.09/0.05 −0.07/−0.02
(e) Normalised high flowq05 −0.23/−0.30 −0.20/−0.13 −0.15/−0.05 −0.05/−0.03 0.11/0.05 0.06/0.12 0.04/−0.01
(f) Integral scaleτ1/e −0.16/−0.11 −0.64/−0.09 −0.48/−0.1 0.32/0.01 0.40/0.18 −0.03/0.11 0.38/0.03
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Fig. 7. Absolute normalised error vs. catchment area (km2) for the signatures regionalised using the process-based (PB) model in cross-
validation mode:(a) mean annual specific runoff (mmyr−1), (b) range of the Pard́e coefficient (–),(c) slope of the normalised flow duration
curve (%/%),(d) normalised flow duration curve value which is exceeded 95 % of the time (–),(e) normalised flow duration curve value
which is exceeded 5 % of the time (–),(f) integral scale (days) in log–log scale. The colour of the points indicates the catchment aridity
(blue-wet vs. red-dry) as in Fig.2. The two catchments in Fig.1 are indicated by the black and red boxes. See text for further details.

flow duration curves, instead, there is no evident relationship
of the estimation performance with catchment area (Fig.7a–
c). Figure8 is analogous to Fig.7 but for Top-kriging. Also
in this case for most signatures the performance increases for
increasing catchment area.

The second column of Table2 shows the correlation be-
tween the absolute normalised error for the 213 catchments
and the median catchment elevation. For most signatures the
Spearman correlation coefficient is negative (significantly for
the case of process based method) meaning that the error de-
creases with increasing catchment elevation. For the mean
annual runoff prediction with the rainfall–runoff model, in-
stead, ANE increases with catchment elevation.

The following three columns report the correlation of re-
gionalisation performances to other average catchment at-

tributes: to the mean catchment slope; to the network density
(from the digital river network map at the 1: 50 000 scale,
as inMerz and Bl̈oschl, 2004); and to the mean topography
index (calculated asλ in Beven and Kirkby, 1979, p. 48). Ta-
ble 2 indicates little dependence between performance and
these characteristics, with the exception of the mean annual
runoff and the integral scale for the process based method.
For mean slope and topography index, this is expected be-
cause the first is positively correlated with catchment eleva-
tion and the second is negatively correlated with the slope.
This is reflected in the values of the Spearman correlation
coefficients in Table2. For the network density, instead, one
reason for the higher errors in predicting annual runoff (and
therefore runoff volumes) in low network density catchments
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Fig. 8.Absolute normalised error vs. catchment area (km2) for the signatures regionalised using Top-kriging (TK) in cross-validation mode:
(a) mean annual specific runoff (mmyr−1), (b) range of the Pard́e coefficient (–),(c) slope of the normalised flow duration curve (%/%),
(d) normalised flow duration curve value which is exceeded 95 % of the time (–),(e)normalised flow duration curve value which is exceeded
5 % of the time (–),(f) integral scale (days) in log–log scale. The colour of the points indicates the catchment aridity (blue-wet vs. red-dry)
as in Fig.2. The two catchments in Fig.1 are indicated by the black and red boxes. See text for further details.

may be the fact that in many cases their geology is partly
karstic, which is notably hard to model.

Table2 indicates very little dependence between perfor-
mance and mean annual precipitation for both methods.
The rainfall–runoff model performance in predicting annual
runoff decreases with mean annual precipitation, which is
highly correlated with elevation in Austria. Similarly, for the
mean annual runoff the performances increase for increasing
aridity index when the process-based model is used. Regard-
ing the other signatures, there is hardly any dependence on
aridity for any of the signatures. Only the performance of
estimation of the integral scale significantly decreases with
increasing aridity when using the process-based model.

5.3 What is the relative performance of the predictions
of different signatures?

Figure9 shows a comparative summary of the results from
Sects.5.1and5.2. Figure9a and b show the performances of
the process-based (fuchsia) and statistical (beige) methods
in terms of normalised error (NE) and absolute normalised
error (ANE), respectively. The bars contain the interquartile
range (i.e. 50 %) of the values of NE and ANE while the lines
connect the median values̃NE andÃNE. These two graphs
show that, both in terms of bias (NE) and error spread (ANE),
the statistical method (Top-kriging) outperforms the region-
alised rainfall–runoff model for essentially all signatures. In
particular, with the exception of the low flows, the overall

spatial biases (i.e.̃NE) are very close to zero for the statistical
method (Fig.9a), which indeed is optimised in a way to min-
imise biases (which still remain, since the performances are
calculated in cross-validation mode). When the runoff sig-
natures are compared among themselves, one sees that the
lowest performances in local prediction are obtained for the
integral scale and the low flow statisticq95. Quite surpris-
ingly, the highest performance is obtained for the high flow
statisticq05. Since the errors are normalised by the observed
values, which are high, ANEs for high flows are much lower
than, for example, for low flows.

Figure 9c shows theR2 for the six signatures region-
alised through the process-based model (fuchsia lines and
points) and Top-kriging (beige lines and points). Also Fig.9c
shows that Top-kriging generally outperforms the region-
alised rainfall–runoff model in estimating the signatures in
ungauged basins. The figure indicates that the performance in
terms ofR2, i.e. the ability of the methods to explain the spa-
tial variability of the signatures, is best for seasonal runoff,
annual runoff and runoff hydrographs, and is poorer for the
prediction of low flows and floods. For most of the signatures
the relative performance in terms ofR2 is consistent with
Fig. 9a and b. In contrast, the extremes have lowerR2, which
is minimum for high flow prediction. The lowR2 for high
flows contrasts with Fig.9a and b, where they were the ones
with highest prediction performance. The spatial variability
of the integral scale can be predicted with more confidence.
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Fig. 9. Comparison of cross-validation performance of prediction
methods for different runoff signatures in ungauged basins in Aus-
tria. The performance measures are(a) normalised error,(b) abso-
lute normalised error (the bars contain 50 % of the values and the
lines connect the medians).(c) coefficient of determinationR2. The
prediction methods are (fuchsia) process-based (PB) method – con-
ceptual rainfall–runoff model whose parameters are regionalised.
(beige) statistical method – Top-kriging (TK). The signatures are
Qm – mean annual specific runoff (mmyr−1), 1Par – range of the
Pard́e coefficient (–),mFDC – slope of the normalised flow duration
curve (%/%),q95 – normalised flow duration curve value which is
exceeded 95 % of the time (–),q05 – normalised flow duration curve
value which is exceeded 5 % of the time (–),τ1/e – integral scale
(days).

6 Discussion and conclusions

An assessment of the performance of predicting six runoff
signatures in ungauged basins has been conducted using
two methods for hydrograph regionalisation: a statistical ap-
proach (Skøien et al., 2006, Top-kriging) and a regionalised
rainfall–runoff model (Parajka et al., 2007b). The assessment
has been performed in cross-validation mode for 213 catch-
ments in Austria, representative of the hydrologic diversity
in the country. The results show that, on average, the biases
are small (< 10 % for most of the signatures), but not neg-

ligible, when the process-based method is used, while they
are very close to 0 % when the geostatistical method is used.
This is because Top-kriging is an unbiased estimator while
the rainfall–runoff model involves biases in the input vari-
ables (precipitation and temperature) on top of biases due
to model structure and regionalised parameters (Montanari,
2011). The average error spread is lower than 10 % of the ob-
served values for the statistical regionalisation method while
it is somewhat higher for the process-based method. The bet-
ter performance of Top-kriging in Austria is due to a number
of reasons. First, the stream gauge density of the study region
is quite high, so there is a lot of runoff information available
for Top-kriging which uses correlations along the stream net-
work (Laaha et al., 2013). In countries where runoff measure-
ments are more sparse, process-based methods or other sta-
tistical methods based on catchment attributes may perform
relatively better than geostatistical methods based on spa-
tial proximity. Second, Top-kriging avoids the use of uncer-
tain input variables such as precipitation and potential evap-
oration. Third, Top-kriging is a linear estimator so it may
avoid some of the issues with model structure and parameter
identifiability associated with rainfall runoff models (Beven,
1993). However, geostatistical methods such as Top-kriging
cannot be used for forecasts in time and/or assessment of
changes in the catchment which is one of the main appli-
cations of rainfall–runoff models (Blöschl and Montanari,
2010).

The predictive performance in ungauged basins is corre-
lated with a number of climate and catchment characteristics.
The predictive performance increases with increasing catch-
ment area for most of the signatures significantly. The depen-
dence of the performance on catchment area may be due to
two reasons. First, larger catchments tend to contain a large
number of data points (both runoff and rainfall), so more in-
formation is available for the predictions. Second, catchment
area is a key variable in the aggregation behaviour of rainfall–
runoff generation processes (Blöschl et al., 1995; Robinson
et al., 1995; Viglione et al., 2010a,b). As the catchment size
increases some of the hydrological variability is averaged out
due to an interplay of space–time scale processes, thus im-
proving hydrological simulation (see e.g.Sivapalan, 2003;
Skøien et al., 2003). These two effects are consistent with
the scale effects of performance of rainfall–runoff models in
gauged catchments (see e.g.Merz et al., 2009; Nester et al.,
2011). They are also consistent with the findings inParajka
et al. (2013) andSalinas et al.(2013) in which the perfor-
mance of all methods increases with catchment area (partic-
ularly for hydrograph and flood predictions).

Interestingly, Top-kriging performance is significantly
correlated with catchment area only, which is consistent with
the findings inLaaha et al.(2013), i.e. that Top-kriging per-
forms much better for locations with upstream data points.
For the rainfall–runoff model the regionalisation perfor-
mance tends to increase with elevation. This may be due to
snow processes in the mountainous catchments, which are
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easier to predict because runoff variability is more determin-
istic being temperature driven (see alsoParajka et al., 2005,
2013). This is the case for all signatures with the exception
of the mean annual runoff. As the signature is the only one
related to the volume of water, a possible explanation could
be the sparseness of precipitation stations at high elevations
and their undercatch (Frei and Scḧar, 1998; Bartolini et al.,
2011).

Parajka et al.(2013) andSalinas et al.(2013) found a clear
pattern of decreasing performance of predicting signatures
with aridity from a synthesis of many studies around the
world. One would expect that, as the climate gets more arid,
the runoff processes tend to become more non-linear (Atkin-
son et al., 2002; Farmer et al., 2003). Runoff processes in
arid climates therefore tend to be spatially more heteroge-
neous than in humid or cold climates. Similarly the temporal
dynamics of runoff tend to be more episodic in arid climates.
The relatively larger space–time variability results in lower
predictability of runoff in ungauged basins in arid catchments
around the world (Parajka et al., 2013; Salinas et al., 2013).
This does not appear to be the case in Austria since none
of the catchments are really arid (i.e. the aridity index is
never greater than unity), while in the studies ofParajka et al.
(2013) andSalinas et al.(2013) the aridity index may be as
large as 3.

Annual and seasonal runoff can be predicted more accu-
rately than all other signatures. This is likely because of the
aggregation of runoff variation over a relatively long time
period. They therefore vary more smoothly in space, which
enhances their predictability. The spatial variability of high
flows and low flows in Austria are harder to predict than
the spatial variability of the other signatures. This is likely
because they are extremes, so their spatial patterns may in-
volve a lot of small-scale heterogeneity as a result of small-
scale variation of precipitation and soil/land use characteris-
tics. The spatial variability of low flows is slightly easier to
predict than that of high flows. One reason could be that the
processes associated with low flows (in particular climate,
longer timescale dry spells) vary more smoothly in space
than do the processes associate with high flows and floods.
The local relative error of estimation, instead, is higher for
low flows than for high flows. Also, extremes are harder
to estimate with process-based methods than with statistical
methods. This is reflected in the fact that all studies reviewed
in Salinas et al.(2013) on regionalisation of extremes use
statistical methods.

The distinction between the different methods of predict-
ing flood and low flow behaviour highlights the important
point that improved hydrograph fitting should not be the ulti-
mate goal of predictions in ungauged basins. Instead, meth-
ods must be optimised to predict specific signatures and
their characteristics (Yadav et al., 2007; Hingray et al., 2010;
Singh et al., 2011; Euser et al., 2013). In the Austrian exam-
ple, the targeted method for low-flow estimations (see e.g.
Laaha and Bl̈oschl, 2007) gives significantly better perfor-

mances (e.g.R2
= 0.75) than those from the regionalised

hydrographs (R2
= 0.68 with Top-kriging) even though the

hydrographs used to estimate these flows have a median re-
gionalisation Nash–Sutcliffe efficiency of 0.87. A detailed
comparative approach focused on understanding individual
signatures and how they are connected may provide more in-
sights and eventually lead to better predictions than solely fo-
cusing on reproducing the full hydrograph. This connectivity
is underpinned by the driving processes. The fact that multi-
ple runoff signatures in Austria respond to individual process
controls illustrates the complex connectivity between process
and response. This Austrian example illustrates the explana-
tory value of comparative hydrology (Falkenmark and Chap-
man, 1989) across processes (through the connection among
signatures), across places (the different catchments/the re-
gions of Austria) and across scales (small and large rivers,
seeBlöschl, 2006).
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Andréassian, V., Perrin, C., Berthet, L., Le Moine, N., Lerat, J.,
Loumagne, C., Oudin, L., Mathevet, T., Ramos, M.-H., and
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Mésźarǒs, I., Miklánek, P., and Parajka, J.: Solar energy income
modelling in mountainous areas, in: ERB and NEFRIEND Proj.5
Conf. Interdisciplinary Approaches in Small Catchment Hydrol-
ogy: Monitoring and Research, edited by: Holko, L., Miklánek,
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